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Part I

Saddle Points Intermezzo
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Games

Objective function
g(x , y)

convex in x , concave in y .

The game value is

V ∗ = inf
x

sup
y

g(x , y) = sup
y

inf
x
g(x , y).

Definition

An ε-saddle point (x̄ , ȳ) satisfies

V ∗ − ε ≤ inf
x
g(x , ȳ) ≤ V ∗ ≤ sup

y
g(x̄ , y) ≤ V ∗ + ε.

Question: how to find ε-saddle point?
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g(x , ȳ) ≤ V ∗ ≤ sup

y
g(x̄ , y) ≤ V ∗ + ε.

Question: how to find ε-saddle point?

Wouter Koolen Bandits, Games, Explore/Exploit WLT2 4 / 83



Games

Objective function
g(x , y)

convex in x , concave in y .
The game value is

V ∗ = inf
x

sup
y

g(x , y) = sup
y

inf
x
g(x , y).

Definition

An ε-saddle point (x̄ , ȳ) satisfies
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g(x , ȳ) ≤ V ∗ ≤ sup

y
g(x̄ , y) ≤ V ∗ + ε.

Question: how to find ε-saddle point?
Wouter Koolen Bandits, Games, Explore/Exploit WLT2 4 / 83



Iterative Algorithm

Idea [Freund and Schapire, 1999]: play a regret minimisation algorithm for
x against one for y .

Players play xt and yt .

Players see loss functions

x 7→ + g(x , yt),

y 7→ − g(xt , y).

Output pair of iterate averages:
(

1
T

∑T
t=1 xt ,

1
T

∑T
t=1 yt

)
.
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Saddle point

Assume the players have regret (bounds) Rx
T and Ry

T , i.e.

T∑

t=1

+g(xt , yt)− inf
x

T∑

t=1

+g(x , yt) ≤ Rx
T

T∑

t=1

−g(xt , yt)− inf
y

T∑

t=1

−g(xt , y) ≤ Ry
T

Theorem

The iterate averages x̄T = 1
T

∑T
t=1 xt and ȳT = 1

T

∑T
t=1 yt form an

Rx
T +Ry

T
T -saddle point.

Wouter Koolen Bandits, Games, Explore/Exploit WLT2 6 / 83



Analysis

V ∗ = inf
x

sup
y

g(x , y)

≤ sup
y

g(x̄T , y) (suboptimal choice x̄T )

≤ sup
y

1

T

T∑
t=1

g(xt , y) (convexity in 1st argument)

≤
1

T

T∑
t=1

g(xt , yt) +
Ry
T

T
(y player regret guarantee)

≤ inf
x

1

T

T∑
t=1

g(x , yt) +
Rx
T + Ry

T

T
(x player regret guarantee)

≤ inf
x
g(x , ȳT ) +

Rx
T + Ry

T

T
(concavity in 2nd argument)

≤ inf
x

sup
y

g(x , y) +
Rx
T + Ry

T

T
(suboptimal choice ȳT )

= V ∗ +
Rx
T + Ry

T

T
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Applications

Choice of online learning algorithm governed by domain of g(x , y).

For either player, we can use e.g.

OGD, Hedge, FTRL, FTPL, . . .
√
T regret ⇒ ε = 1/

√
T

while the second player can ensure negative regret with

Be-The-Leader

Best Response no memory

Many more options. Optimism [Rakhlin and Sridharan, 2013], principled
path to Nesterov acceleration [Wang and Abernethy, 2018]
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Introduction to the Tutorial

Outline

1 Introduction to the Tutorial
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Stochastic Bandit

Model (Unknown)

P
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)
= 1/6

P
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)
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P
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)
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Degenne, Shao and Koolen Sequential Reward Maximisation Scientific Meeting 3 / 25
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Stochastic Bandit interaction.

Time

Degenne, Shao and Koolen Sequential Reward Maximisation Scientific Meeting 4 / 25

Introduction to the Tutorial

Stochastic Bandit Interaction
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Introduction to the Tutorial

Tasks

1 Pure Exploration: use trial to cure population

2 Reward Maximisation: cure patients in trial
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Structured Stochastic Bandit
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Structured Stochastic Bandit Interaction

4 2 3 5 3 4 1 2
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Introduction to the Tutorial

Structured Stochastic Bandit Interaction
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Introduction to the Tutorial

What This Tutorial is About

We will develop efficient learning algorithms for Pure Exploration and
Reward Maximisation.

Information-theoretic lower bounds will tell us that the complexity of
each task is characterised by a certain two-player zero-sum game.

We will base our learning algorithms on iterative saddle point solvers for
this game.
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Part II

Pure Exploration / Active Testing

Wouter Koolen Bandits, Games, Explore/Exploit WLT2 18 / 83



Introduction

Outline

2 Introduction

3 Model

4 Lower Bound

5 Pure Exploration Algorithms

6 A Games Perspective on TaS

7 Experiments

8 Conclusion
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Introduction

Topic: Pure Exploration

Query:

most effective drug dose?

most appealing website layout?

safest next robot action?

or

experiment

outcome
42

Main scientific questions

Efficient systems

Sample complexity as function of query and environment
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Model

Environments

We fix an 1-d exponential family (Bernoulli, Gaussian, . . . ) parameterised
by the mean. KL divergence denoted by d(µ, λ).

Multi-armed bandit model

A K -armed bandit model is a tuple µ = (µ1, . . . , µK ).

Query

Set of possible environments M⊆ RK . Set of possible answers I.
Correct answer function i∗ :M→ I.
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Model

Examples

Problem name Best Arm Minimum Threshold
Possible answers I [K ] {lo, hi}
Correct answer i∗(µ) argmaxk µk lo if mink µk < γ

hi if mink µk > γ

Top-M

Combinatorial Best Arm

Maximum Profit

Unit Ball

Thresholding Bandit

Pure Nash equilibrium

Game Tree Search

. . .
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Model

Strategy for Learner

Strategy

Stopping rule τ ∈ N
In round t ≤ τ sampling rule picks At ∈ [K ]. See Xt ∼ µAt .

Recommendation rule Î ∈ I.

Realisation of interaction: H :=
(
A1,X1, . . . ,Aτ ,Xτ , Î

)
.

Two objectives: sample efficiency τ and correctness Î = i∗(µ).
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Model

Goal: PAC learning

Definition

Fix small confidence δ ∈ (0, 1). A strategy is δ-correct if

Pµ
(
Î 6= i∗(µ)

)
≤ δ for every bandit model µ ∈M.

Goal: minimise sample complexity Eµ[τ ] over all δ-correct strategies.

Not in this talk: Fixed Budget.
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Lower Bound

Outline

2 Introduction

3 Model

4 Lower Bound

5 Pure Exploration Algorithms

6 A Games Perspective on TaS
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8 Conclusion
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Lower Bound

Instance-Dependent Sample Complexity Lower Bound

Intuition (going back at least to Lai and Robbins [1985]): if observations
are likely under both µ and λ, yet i∗(µ) 6= i∗(λ), then learner cannot stop
and be correct in both.

Define the alternative to answer i ∈ I by ¬i := {λ ∈M|i∗(λ) 6= i}.

Theorem (Castro 2014, Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ ∈M

Eµ[τ ] ≥ T ∗(µ) ln
1

δ

where the characteristic time T ∗(µ) is given by

1

T ∗(µ)
= max

w∈4K

min
λ∈¬i∗(µ)

K∑

i=1

wid(µi , λi ).
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Lower Bound

Example

Best Arm identification: i∗(µ) = argmaxi µi .
K = 5 Bernoulli arms, µ = (0.4, 0.3, 0.2, 0.1, 0.0).

T ∗(µ) = 200.4 w∗(µ) = (0.45, 0.46, 0.06, 0.02, 0.01)

At δ = 0.05, the time gets multiplied by ln 1
δ = 3.0.
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Pure Exploration Algorithms

Outline

2 Introduction

3 Model

4 Lower Bound

5 Pure Exploration Algorithms

6 A Games Perspective on TaS
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8 Conclusion
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Pure Exploration Algorithms

Pure Exploration Algorithms

Recall, a strategy is defined by

Stopping rule

Recommendation rule

Sampling rule
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Pure Exploration Algorithms

Stopping and Recommendation Rules

Quantify evidence for {i∗(µ) = i∗(µ̂t)} vs alternative {i∗(µ) 6= i∗(µ̂t)}.

Definition

The extended GLR statistic is defined as

Λ̂t = inf
λ∈¬i∗(µ̂(t))

K∑

a=1

Na(t)d (µ̂a(t), λa) .

Proposal: stop when

Λ̂t ≥ β(t, δ) := ln
1

δ
+ K ln ln t + K ln ln

1

δ

and recommend Î = i∗(µ̂t).

Theorem (Kaufmann and Koolen 2018)

The above stopping and recommendation rules, combined with any
sampling rule give a δ-correct algorithm.
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Pure Exploration Algorithms

Operationalisation of the Oracle Weights

Recall sample complexity lower bound governed by

max
w∈4K

min
λ∈¬i∗(µ)

K∑

i=1

wid(µi , λi )

Any matching algorithm must sample with optimal (oracle) proportions

w∗(µ) = argmax
w∈4K

min
λ∈¬i∗(µ)

K∑

i=1

wid(µi , λi )
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Pure Exploration Algorithms

Putting it all together

Idea: draw At ∼ w∗(µ̂(t)).

Track-and-Stop [Garivier and Kaufmann, 2016]

Ensure µ̂(t)→ µ by forced exploration

assuming w∗ is continuous, this ensures w∗(µ̂t)→ w∗(µ).

Draw arm with Ni (t) below
∑t

s=1 w
∗
i (µ̂s) (C-tracking)

hence Ni (t)/t → w∗i (µ)

Inherit δ-correctness from GLR stopping/recommendation rule.

Theorem (Degenne et al. 2019)

Track-and-Stop with C-tracking has asymptotically optimal sample
complexity.

Theorem (Degenne et al. 2019)

Track-and-Stop with D-tracking may fail to converge.
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A Games Perspective on TaS

Games perspective

Recall TaS based on plug-in estimate w∗(µ̂t) of oracle weights

w∗(µ) = argmax
w∈4K

min
λ∈¬i∗(µ)

K∑

i=1

wid(µi , λi )

We can implement the Track-and-Stop sampling rule by running an
online-learning based saddle point solver to (approximate) convergence
every round.

Choice of learners: AdaHedge vs Best Response.

The user needs to provide best response oracle (often tractable)

w,µ 7→ argmin
λ∈¬i∗(µ)

K∑

i=1

wid(µi , λi ).
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The user needs to provide best response oracle (often tractable)

w,µ 7→ argmin
λ∈¬i∗(µ)

K∑

i=1

wid(µi , λi ).
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A Games Perspective on TaS

Ironing out Inefficiencies

We are computing w∗(µ̂t) on noisy µ̂t ≈ µ. So how precise does our
saddle point need to be?

µ̂t ≈ µ̂t+1. Can we reuse (most) computation?

Can we get finite confidence guarantees?
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A Games Perspective on TaS

Interleaved Iterative Solution

Main idea [Degenne, Koolen, and Ménard, 2019]: advance the saddle
point solver by one iteration for every bandit interaction.
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A Games Perspective on TaS

Sampling Rule

k-learnerAdaHedge Best response

argminλ∈Λ

∑
k w

k
t d(µ̂kt , λ

k)

wt wt

λt∇t

Tracking

wt

Bandit

kt

Estimate

Xt ∼ µkt

µ̂t
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A Games Perspective on TaS

Compositionality

The “overheads” of the ingredients compose: Tracking O(1),
concentration

√
T , regret

√
T , optimism

√
T .

Theorem (Degenne, Koolen, and Ménard 2019)

The sample complexity is at most

Eµ[τ ] ≤ T ∗(µ) ln
1

δ
+ small
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A Games Perspective on TaS

Proof ideas (cheating with optimism, it = i∗)

As long as we do not stop, t < τ ,

β(t, δ) ≥ inf
λ∈¬it

K∑

k=1

Nk
t d(µk , λk) (stop rule)

≈ inf
λ∈¬i∗

t∑

s=1

K∑

k=1

wk
s d(µk , λk) (tracking)

≥
t∑

s=1

K∑

k=1

wk
s Eλ∼qs d(µk , λk)− Rλt (regret λ)

≥ max
k

t∑

s=1

Eλ∼qs d(µk , λk)− Rλt − Rk
t (regret k)

≥ t inf
q∈P(¬i∗)

max
k

Eλ∼q d(µk , λk)− O(
√
t)

Find maximal t to get bound on τ .
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Experiments

Best Arm Identification Experiment

Best Arm for Bernoulli bandit model µ = (0.3, 0.21, 0.2, 0.19, 0.18). The
oracle weights are w∗ = (0.34, 0.25, 0.18, 0.13, 0.10). δ = 0.1.
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Experiments

Minimum Threshold Experiment

Minimum Threshold for Gaussian bandit model µ = (0.5, 0.6) with
threshold γ = 0.6, w∗ = (1, 0). Note the excessive sample complexity of
T-C/T-D. δ = 10−10.
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Conclusion

Conclusion

Pure Exploration currently going through a renaissance

New and different instance-optimal identification algorithms
I Best Arm
I Combinatorial best action
I Game Tree Search
I . . .

Moving toward more complex queries. RL on the horizon . . .

Useful submodules
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Conclusion

Topics Skipped

Multiple correct answers (e.g. ε Best Arm) [Degenne and Koolen,
2019] ⇐ surprisingly subtle.

Optimal algorithms based on variations of Thompson Sampling
I Top-Two for Best Arm [Russo, 2016]
I Murphy Sampling for Minimum Threshold [Kaufmann et al., 2018].
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Conclusion

Many questions remain open

Practically efficient algorithms

Remove forced exploration

Moderate confidence δ 6→ 0 regime [Simchowitz et al., 2017].

Understand sparsity patterns

Dynamically expanding horizon
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Part III

Reward Maximisation / Regret Minimisation

Wouter Koolen Bandits, Games, Explore/Exploit WLT2 48 / 83



Change of perspective

Now samples represent reward, and the algorithm aims to collect as
much reward as possible.

Regret metric: maximum reward minus reward collected.

Famous UCB algorithm (family) [Auer et al., 2002].

O(lnT ) regret possible.
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Stochastic Bandit Instance (Running Example)
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Desired behaviour
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Introduction

Setting

Learner Bandit µ

kt

Xt ∼ µkt

Structure M⊆ RK .
MAB instance µ ∈M
Time horizon T
Expfam d(µ, λ)
Gaps ∆k = µ∗ − µk

Regret :=
K∑

k=1

E[Nk
T ]∆k
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Introduction

Goals

Asymptotic Optimality

Finite-time Regret Guarantees

General Structure-Aware Methodology

Computational Efficiency
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Introduction

Banditual Context

Regret

Unimodal [Combes and Proutiere, 2014]

Lipschitz [Magureanu, Combes, and Proutière, 2014]

Rank-1 [Katariya, Kveton, Szepesvári, Vernade, and Wen, 2017]

Linear [Lattimore and Szepesvári, 2017]

OSSB [Combes, Magureanu, and Proutiere, 2017]

Pure Exploration

Track-and-Stop (MAB) [Garivier and Kaufmann, 2016]

Structure, Gaussian [Chen, Gupta, Li, Qiao, and Wang, 2017]

Structure, ExpFam [Kaufmann and Koolen, 2018]

Game core [Degenne, Koolen, and Ménard, 2019] part 1
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Lower bound

Argument [Graves and Lai, 1997]

Fix an asymptotically consistent algorithm for structure M. Consider its
behaviour on µ ∈M, and on any alternative bandit model λ ∈M with
i∗(µ) 6= i∗(λ):

Eµ
[
N

i∗(µ)
T

]
/T → 1 but Eλ

[
N

i∗(µ)
T

]
/T → 0.

This stark difference in behaviour requires discriminating information!
Specifically,

KL
(
PT
µ

∥∥PT
λ

)
=
∑

k

Eµ[Nk
T ]d(µk , λk) ≥ lnT .
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Lower bound

Instance-Dependent Regret Lower Bound

Any asymptotically consistent algorithm for structure M must incur on
each µ ∈M regret at least

VT = min
N≥0

∑

k

Nk∆k subject to inf
λ∈Λ

∑

k

Nkd(µk , λk) ≥ lnT

where
Λ =

{
λ ∈M

∣∣ i∗(λ) 6= i∗(µ)
}

This is a (semi-infinite) covering linear program.
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Lower bound

Operationalising the Lower Bound

Earlier work
At each time step

compute oracle sample counts N∗(µ̂t) and advance Nt →N∗, or

force exploration to ensure µ̂t → µ.

This talk

Reformat lower bound as zero-sum “minigame”.

Iteratively solve minigame by full information online learning.

Use iterates to advance Nt .

Add optimism to induce exploration.

Compose regret bound from minigame regret + estimation regret
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Lower bound

Minigame

We have VT = lnT
D∗ where

D∗ = max
w∈4

inf
λ∈Λ

∑
k w

kd(µk , λk)∑
k w

k∆k

w k ∝ Nk

pulls

= max
w̃∈4

inf
λ∈Λ

∑

k

w̃ k d(µk , λk)

∆k
w̃ k ∝ Nk∆k

regret

= inf
q∈4(Λ)

max
k

Eλ∼q
[
d(µk , λk)

]

∆k
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Lower bound

Illustration
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Lower bound

Overall Setup

k-learnerAdaHedge Best response

argminλ∈Λ

∑
k w

k
t d(µ̂kt , λ

k)

w̃t wt

λt∇t

Tracking

wt

Bandit

kt

Estimate

Xt ∼ µkt

µ̂t
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Noise Free Case
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Noise Free Case

Noise-free result

Let Bkn be regret of full information online learning (AdaHedge) w. linear
losses on the simplex.

Theorem

Consider running our algorithm until infλ∈Λ

∑n
t=1

∑
k w

k
t d(µk , λk) ≥ lnT.

The iterates w1, . . . ,wn satisfy

Rn =
n∑

t=1

〈wt ,∆〉 ≤ VT +
Bkn
D∗

Note

Can get k1, . . . , kn using tracking (at cost ∆max lnK )

Standard choice gives n = O(lnT ) and
Bkn = O(

√
n) = O(

√
lnT ) = o(lnT ).

Wouter Koolen Bandits, Games, Explore/Exploit WLT2 64 / 83



Noise Free Case

Regret analysis

Given moves wt ∈ 4K and λt ∈ Λ, we instantiate a k-learner for the gain
function

gt(w̃) = 〈wt ,∆〉
∑

k

w̃k d(µk , λkt )

∆k

to provide regret bound

n∑

t=1

gt(w̃t) ≥ max
k

n∑

t=1

〈wt ,∆〉
d(µk , λkt )

∆k
− Bkn . (1)
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Noise Free Case

Regret analysis (ctd)

Given w̃t from the k-learner, we define player and opponent by

wk
t ∝ w̃k

t /∆k (2)

λt ∈ argmin
λ∈Λ

∑

k

wk
t d(µk , λk) (3)

to obtain

n∑

t=1

gt(w̃t) =
n∑

t=1

〈wt ,∆〉
∑

k

w̃k
t

d(µk , λkt )

∆k

(2)
=

n∑

t=1

∑

k

wk
t d(µk , λkt )

(3)
=

n∑

t=1

inf
λ∈Λ

∑

k

wk
t d(µk , λk) ≤ inf

λ∈Λ

n∑

t=1

∑

k

wk
t d(µk , λk)

(4)
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Noise Free Case

Regret analysis (ctd)

The stopping condition plus regret bounds (1) and (4) result in

lnT + Bkn ≥ max
k

n∑

t=1

〈wt ,∆〉
d(µk , λkt )

∆k
= Rn max

k

n∑

t=1

〈wt ,∆〉
Rn

d(µk , λkt )

∆k

≥ Rn inf
q∈4(Λ)

max
k

Eλ∼q
[
d(µk , λk)

]

∆k
= RnD

∗

where we abbreviated Rn =
∑n

t=1 〈wt ,∆〉. All in all we showed

Rn ≤ VT +
Bkn
D∗
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Noise Free Case

On Symmetry

Game-theoretic equilibrium is symmetric concept.

Can also focus on λ-learner instead of k-learner. Interesting trade-offs

More complex domain λ ∈ Λ.

No need for tracking, best response in k is “pure” arm.

Will show both in experiments.
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The Real Deal

Scaling up

Can use what we developed so far to compute oracle weights every round
(OSSB). Efficient for every bandit structure for which best response is
tractable.

But we can do much better!
Idea:

Run only one iteration every round.

Deal with unknown µ.

Exploitation.

some issues . . .
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The Real Deal

First Issue

Actually, ∆∗ = 0. And we were dividing by it all over the place.

Idea: run on ∆k
ε = max

{
∆k , ε

}
.

Theorem

lim
ε→0

V ε
T = VT

In several cases we can show perturbed value is V ε
T ≤ VT +

√
2εVT .
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The Real Deal

One iteration every round

Replace µ by estimate µ̂t .

Add optimism to force exploration.
We introduce upper confidence bounds on the ratio KL/gap.

UCBk
s = sup

ξ∈Cks−1

d(ξ, λkt )

max
{
εs , 1{k 6= js}

[
µ+
s−1 − ξ

]}

where Cks−1 =


µ̂ks−1 ±

√√√√ ln(njss−1,N
k
s−1)

Nk
s−1


 .

We do not know identity of the best arm, and hence Λ (domain of
λ) Estimate best arm, and run K independent interactions.
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The Real Deal

Algorithm

1: Pull each arm once and get µ̂K .
2: for t = K + 1, · · · ,T do
3: if ∃i ∈ [K ], minλ∈¬i

∑
k N

k
t−1d(µ̂k

t−1, λ
k) > f (t − 1) then

4: kt = i (if there are several suitable i , pull any one of them)
5: else

6: µ+
t−1, jt = (arg) maxj∈[K ] µ̂

j
t−1 +

√
ln(njt−1,N

j
t−1)

N j
t−1

.

7: get w̃t from learner Ak
jt

, compute wk
t ∝ w̃k

t /∆̃k .
8: compute best response λt .

9: Compute UCBk
t = maxξ∈[µ̂k

t−1−...,µ̂k
t−1+...]

[
d(ξ,λk

t )

max{εt ,1{k 6=jt}[µ+
t−1−ξ]}

]

10: kt = argmink∈[K ] N
k
t−1 −

∑t
s=1 w

k
s . . Tracking

11: end if
12: Access X kt

t , update µ̂t and Nt

13: end for
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Experiments

Experiment: Sparse
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Experiments

Experiment: Linear
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Experiments

Conclusion

Game equilibrium based technique for matching instance dependent
lower bounds for structured stochastic bandits.
All you need is Best Response oracle.

Fine tuning

What about “lower-order” terms not scaling with lnT?

Is minigame interaction “easy data”? MetaGrad [van Erven and
Koolen, 2016]

Minigames for other problems?

Thank you!
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Discontinuous single-answer problems
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Discontinuous single-answer problems

About that continuity assumption?

Can w∗ be discontinuous?

Example: Minimum Threshold

µ
w∗ = δ2

w∗ = δ1
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Discontinuous single-answer problems

Continuity restored

Recall oracle weights are given by

w∗(µ) = argmax
w∈4

inf
λ∈¬i∗(µ)

∑

a

wad(µa, λa)

Theorem

w∗, when viewed as a set-valued function, is upper hemicontinuous.
Moreover, its output is always a convex set.
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Discontinuous single-answer problems

Intuition

µ
w∗ = δ2

w∗ = δ1

On bandit model µ, our empirical distribution will be a convex
combination of δ1 and δ2.
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KL Tensorises

KL Tensorises

Algorithm is common and observations are IID. Hence

Pµ
(
IT ,XT

)

Pλ (IT ,XT )
=

T∏

t=1

PAlg

(
It
∣∣I t−1,X t−1

)
µIt (Xt)

PAlg (It |I t−1,X t−1)λIt (Xt)
=

T∏

t=1

µIt (Xt)

λIt (Xt)

It follows that

KL
(
Pµ(IT ,XT )

∥∥Pλ(IT ,XT )
)

=
T∑

t=1

Eµ
[

ln
µIt (Xt)

λIt (Xt)

]

=
T∑

t=1

Eµ [d(µIt , λIt )]

=
K∑

i=1

Eµ [Ni ,T ] d(µi , λi )
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