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Stochastic Bandit
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Stochastic Bandit interaction.
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Structured Stochastic Bandit Interaction
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Desired behaviour
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Outline

© Introduction
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Setting

Xt ~ Mk,

ke

Structure M C RK.
MAB instance u € M
Expfam d(u, A)
Gaps Ak = p* —
Regret

k

.
> E[aK]
t=1
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Introduction

Goals

Asymptotic Optimality
Finite-time Regret Guarantees

General Structure-Aware Methodology

Computational Efficiency
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Banditual Context

Regret
e Unimodal [Combes and Proutiere, 2014]
o Lipschitz [Magureanu, Combes, and Proutiére, 2014]
e Rank-1 [Katariya, Kveton, Szepesvari, Vernade, and Wen, 2017]
@ Linear [Lattimore and Szepesvari, 2017]
@ OSSB [Combes, Magureanu, and Proutiere, 2017]

Pure Exploration
@ Track-and-Stop (MAB) [Garivier and Kaufmann, 2016]
@ Structure, Gaussian [Chen, Gupta, Li, Qiao, and Wang, 2017]
@ Structure, ExpFam [Kaufmann and Koolen, 2018]

e Game core [Degenne, Koolen, and Ménard, 2019] yesterday
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bound

Outline

© Lower bound
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Argument [Graves and Lai, 1997]

Fix an asymptotically consistent algorithm for structure M. Consider its
behaviour on . € M, and on any alternative bandit model A € M with

() # *(N):
B, [NTW) /T 51 bt Ex[NS®]/T 0.

This stark difference in behaviour requires discriminating information!
Specifically,

KL(PL[|PL) = Y Eu[NFld(u*,A*) > InT.
k
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Lower bound

Instance-Dependent Regret Lower Bound

Any asymptotically consistent algorithm for structure M must incur on
each p € M regret at least

N>0

Vr = | mi N¥A¥ subject to inf Y N¥d(p*,\)>InT
T i k subject to A"é/\zk: (L, A%) > In

where
A= {xeM|i*(A)#i"(n)}

This is a (semi-infinite) covering linear program.

Degenne, Shao and Koolen Sequential Reward Maximisation Scientific Meeting 14 /25



Lower bound

Operationalising the Lower Bound

Earlier work
At each time step

e compute oracle sample counts N*(fi;) and advance Ny — N*, or

o force exploration to ensure fi; — p.
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Lower bound

Operationalising the Lower Bound

Earlier work
At each time step

e compute oracle sample counts N*(fi;) and advance Ny — N*, or

o force exploration to ensure fi; — p.

This talk

Reformat lower bound as zero-sum “minigame”.

Iteratively solve minigame by full information online learning.
Use iterates to advance IN;.
Add optimism to induce exploration.

Compose regret bound from minigame regret + estimation regret
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Lower bound

Minigame

We have V1 = Ian*T where

p P wk oc Nk
d A
D* _ max Inf ka (/’L 9 ) pU”S
weA AeA > WKAK
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Minigame

We have V3 = 2T where

D*
p P wk oc Nk
d A
D* — | max inf Do wid(p A") pulls
wWEA XEN Zk wk Ak
[ d(u*, A )
= f A ’
H;]eai(;\g/\ Ak
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Minigame

We have V1 = '“D*T

D*

Degenne, Shao and Koolen

where

p P wk oc Nk
max inf 2 WA, X) pulls
WEA AEN Zk wk Ak
[ e d(pk, N9

k 1)

O AF
EAN‘I [d(:u’ka )‘k)]
L A
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Lower bound

[[lustration
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Lower bound

Overall Setup

argminyep o, wid(u, X¥)

AdaHedge —

Best response

wt
ke fue
Bandit Estimate

Xt ~ ok,
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Outline

© Noise Free Case
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Noise Free Case

Noise-free result

Let BX be regret of full information online learning (AdaHedge) w. linear
losses on the simplex.

Theorem

Consider running our algorithm until infxen > 1_; S, wkd(puk, A<) > In T.
The iterates w1, ..., w, satisfy

n

Bk
R, = < s
n= D (wnd) < Vr+
t=1
Note
e Can get ki,..., k, using tracking (at cost AM*|n K)

e Standard choice gives n = O(In T) and
BY = 0(y/n) = O(VInT) =o(In T).
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Noise Free Case

On Symmetry

Game-theoretic equilibrium is symmetric concept.

Can also focus on A-learner instead of k-learner. Interesting trade-offs
@ More complex domain A € A.

@ No need for tracking, best response in k is “pure” arm.
Will show both in experiments.
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@ Experiments
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Experiment: Sparse

M =1[0.3,0.8,0.3,0.3, 0.3, 0.3] in Sparse
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Experiment: Linear

M =1[1.0,2.21113, 0.366554, - 1.98459, - 1.5931, 1.0] in Linea
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Conclusion

Game equilibrium based technique for matching instance dependent
lower bounds for structured stochastic bandits.
All you need is Best Response oracle.

o Fine tuning
@ What about “lower-order” terms not scaling with In T7?

@ Is minigame interaction “easy data”? MetaGrad [Van Erven and
Koolen, 2016]

@ Minigames for other problems?
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Conclusion

Game equilibrium based technique for matching instance dependent
lower bounds for structured stochastic bandits.
All you need is Best Response oracle.

o Fine tuning
@ What about “lower-order” terms not scaling with In T7?

@ Is minigame interaction “easy data”? MetaGrad [Van Erven and
Koolen, 2016]

@ Minigames for other problems?

Thank you!
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