Sequential Reward Maximisation by Solving a Semi-infinite Covering LP

Wouter M. Koolen

Team

Rémy Degenne

Han Shao (邵涵)

Wouter Koolen

Stochastic Bandit

Stochastic Bandit

Model (Unknown)

$$\mathbb{P}\left(\bigodot \middle|$$

$$\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right) = 1/6$$

$$= 2/3$$

$$\mathbb{P}\left(\bigcirc \middle| \overline{\bullet} \right) = 1/3$$

Stochastic Bandit interaction.

Time

Structured Stochastic Bandit

Structured Stochastic Bandit

Model (Unknown)

$$\mathbb{P}\left(\bigcirc \middle| \cancel{f} \times 1 \right) = 1/6$$

$$\mathbb{P}\left(\bigcirc \middle| \cancel{f} \times 2 \right) = 3/6$$

$$\mathbb{P}\left(\bigcirc \middle| \cancel{f} \times 3 \right) = 5/6$$

$$\mathbb{P}\left(\bigcirc \middle| \cancel{f} \times 4 \right) = 4/6$$

$$\mathbb{P}\left(\bigcirc \middle| \cancel{f} \times 5 \right) = 2/6$$

Structured Stochastic Bandit Interaction

Desired behaviour

Outline

- Introduction
- 2 Lower bound
- Noise Free Case
- 4 Experiments

Setting

Structure $\mathcal{M}\subseteq R^K$. MAB instance $\boldsymbol{\mu}\in\mathcal{M}$ Expfam $d(\boldsymbol{\mu},\lambda)$ Gaps $\Delta^k=\boldsymbol{\mu}^*-\boldsymbol{\mu}^k$ Regret

$$\sum_{t=1}^T \mathbb{E}[\Delta^{k_t}]$$

Goals

- Asymptotic Optimality
- Finite-time Regret Guarantees
- General Structure-Aware Methodology
- Computational Efficiency

Banditual Context

Regret

- Unimodal [Combes and Proutiere, 2014]
- Lipschitz [Magureanu, Combes, and Proutière, 2014]
- Rank-1 [Katariya, Kveton, Szepesvári, Vernade, and Wen, 2017]
- Linear [Lattimore and Szepesvári, 2017]
- OSSB [Combes, Magureanu, and Proutiere, 2017]

Pure Exploration

- Track-and-Stop (MAB) [Garivier and Kaufmann, 2016]
- Structure, Gaussian [Chen, Gupta, Li, Qiao, and Wang, 2017]
- Structure, ExpFam [Kaufmann and Koolen, 2018]
- Game core [Degenne, Koolen, and Ménard, 2019] yesterday

Outline

- Introduction
- 2 Lower bound
- Noise Free Case
- 4 Experiments

Argument [Graves and Lai, 1997]

Fix an **asymptotically consistent** algorithm for structure \mathcal{M} . Consider its behaviour on $\mu \in \mathcal{M}$, and on any alternative bandit model $\lambda \in \mathcal{M}$ with $i^*(\mu) \neq i^*(\lambda)$:

$$\mathbb{E}_{m{\mu}}ig[m{N}_{m{T}}^{i^*(m{\mu})}ig]/m{T} o 1 \qquad ext{but} \qquad \mathbb{E}_{m{\lambda}}ig[m{N}_{m{T}}^{i^*(m{\mu})}ig]/m{T} o 0.$$

This stark difference in behaviour requires discriminating information! Specifically,

$$\mathsf{KL}ig(\mathbb{P}_{m{\mu}}^T ig\| \mathbb{P}_{m{\lambda}}^T ig) = \sum_{k} \mathbb{E}_{m{\mu}}[N_T^k] d(\mu^k, \lambda^k) \geq \mathsf{In} \ T.$$

Instance-Dependent Regret Lower Bound

Any asymptotically consistent algorithm for structure $\mathcal M$ must incur on each $\mu \in \mathcal M$ regret at least

$$V_T = \left[\begin{array}{cc} \min_{N \geq 0} \sum_k N^k \Delta^k & \text{subject to} & \inf_{\lambda \in \Lambda} \sum_k N^k d(\mu^k, \lambda^k) \geq \ln T \end{array}
ight]$$

where

$$\Lambda = \left\{ \boldsymbol{\lambda} \in \mathcal{M} \mid i^*(\boldsymbol{\lambda}) \neq i^*(\boldsymbol{\mu}) \right\}$$

This is a (semi-infinite) covering linear program.

Operationalising the Lower Bound

Earlier work

At each time step

- ullet compute oracle sample counts $N^*(\hat{\mu}_t)$ and advance $N_t o N^*$, or
- force exploration to ensure $\hat{\mu}_t o \mu$.

Operationalising the Lower Bound

Earlier work

At each time step

- ullet compute oracle sample counts $N^*(\hat{\mu}_t)$ and advance $N_t o N^*$, or
- force exploration to ensure $\hat{\mu}_t o \mu$.

This talk

- Reformat lower bound as zero-sum "minigame".
- Iteratively solve minigame by full information online learning.
- ullet Use iterates to advance N_t .
- Add optimism to induce exploration.
- Compose regret bound from minigame regret + estimation regret

Minigame

We have
$$V_T = \frac{\ln T}{D^*}$$
 where

$$D^* = \left[\max_{w \in \triangle} \inf_{\lambda \in \Lambda} \frac{\sum_{k} w^k d(\mu^k, \lambda^k)}{\sum_{k} w^k \Delta^k} \right]$$

Minigame

We have
$$V_T = \frac{\ln T}{D^*}$$
 where

$$D^* = \max_{\boldsymbol{w} \in \Delta} \inf_{\boldsymbol{\lambda} \in \Lambda} \frac{\sum_{k} w^k d(\mu^k, \lambda^k)}{\sum_{k} w^k \Delta^k}$$

$$= \max_{\tilde{\boldsymbol{w}} \in \Delta} \inf_{\boldsymbol{\lambda} \in \Lambda} \sum_{k} \tilde{w}^k \frac{d(\mu^k, \lambda^k)}{\Delta^k}$$

$$= w^k \propto N^k$$

$$\tilde{\boldsymbol{w}}^k \propto N^k \Delta^k$$
regret

Minigame

We have
$$V_T = \frac{\ln T}{D^*}$$
 where
$$D^* = \max_{\boldsymbol{w} \in \triangle} \inf_{\boldsymbol{\lambda} \in \Lambda} \frac{\sum_k w^k d(\mu^k, \lambda^k)}{\sum_k w^k \Delta^k}$$
 pulls
$$= \max_{\tilde{\boldsymbol{w}} \in \triangle} \inf_{\boldsymbol{\lambda} \in \Lambda} \sum_k \tilde{w}^k \frac{d(\mu^k, \lambda^k)}{\Delta^k}$$
 regret
$$= \inf_{\boldsymbol{q} \in \triangle(\Lambda)} \max_k \frac{\mathbb{E}_{\boldsymbol{\lambda} \sim \boldsymbol{q}} \left[d(\mu^k, \lambda^k)\right]}{\Delta^k}$$

Illustration

Overall Setup

Outline

- Introduction
- 2 Lower bound
- Noise Free Case
- 4 Experiments

Noise-free result

Let \mathcal{B}_n^k be regret of full information online learning (AdaHedge) w. linear losses on the simplex.

Theorem

Consider running our algorithm until $\inf_{\lambda \in \Lambda} \sum_{t=1}^n \sum_k w_t^k d(\mu^k, \lambda^k) \ge \ln T$. The iterates w_1, \dots, w_n satisfy

$$R_n = \sum_{t=1}^n \langle w_t, \Delta \rangle \leq V_T + \frac{\mathcal{B}_n^k}{D^*}$$

Note

- Can get k_1, \ldots, k_n using tracking (at cost $\Delta^{\max} \ln K$)
- Standard choice gives $n = O(\ln T)$ and $\mathcal{B}_n^k = O(\sqrt{n}) = O(\sqrt{\ln T}) = o(\ln T)$.

On Symmetry

Game-theoretic equilibrium is **symmetric** concept.

Can also focus on λ -learner instead of k-learner. Interesting trade-offs

- More complex domain $\lambda \in \Lambda$.
- No need for tracking, best response in *k* is "pure" arm.

Will show both in experiments.

Outline

- Introduction
- 2 Lower bound
- Noise Free Case
- 4 Experiments

Experiment: Sparse

Experiment: Linear

 μ = [1.0, 2.21113, 0.366554, -1.98459, -1.5931, 1.0] in Linea

Conclusion

Game equilibrium based technique for matching **instance dependent lower bounds** for structured stochastic bandits.

All you need is **Best Response oracle**.

- Fine tuning
- What about "lower-order" terms not scaling with In T?
- Is minigame interaction "easy data"? MetaGrad [Van Erven and Koolen, 2016]
- Minigames for other problems?

Conclusion

Game equilibrium based technique for matching **instance dependent lower bounds** for structured stochastic bandits.

All you need is **Best Response oracle**.

- Fine tuning
- What about "lower-order" terms not scaling with In T?
- Is minigame interaction "easy data"? MetaGrad [Van Erven and Koolen, 2016]
- Minigames for other problems?

Thank you!