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Rémy Degenne Han Shao (邵涵) Wouter Koolen

Degenne, Shao and Koolen All you need is Best Response London MAB Workshop 2 / 30



Stochastic Bandit Instance (Running Example)
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Desired behaviour
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Introduction

Setting

Learner Bandit µ

kt

Xt ∼ µkt

Structure M⊆ RK .
MAB instance µ ∈M
Expfam d(µ, λ)
Gaps ∆k = µ∗ − µk
Regret

T∑
t=1

E[∆kt ]
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Introduction

Goals

Asymptotic Optimality

Finite-time Regret Guarantees

General Structure-Aware Methodology

Computational Efficiency
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Introduction

Banditual Context

Regret

Unimodal [Combes and Proutiere, 2014]

Lipschitz [Magureanu, Combes, and Proutière, 2014]

Rank-1 [Katariya, Kveton, Szepesvári, Vernade, and Wen, 2017]

Linear [Lattimore and Szepesvári, 2017]

OSSB [Combes, Magureanu, and Proutiere, 2017]

Pure Exploration

Track-and-Stop (MAB) [Garivier and Kaufmann, 2016]

Structure, Gaussian [Chen, Gupta, Li, Qiao, and Wang, 2017]

Structure, ExpFam [Kaufmann and Koolen, 2018]

Game core [Degenne, Koolen, and Ménard, 2019] yesterday

Degenne, Shao and Koolen All you need is Best Response London MAB Workshop 8 / 30



Lower bound

Outline

1 Introduction

2 Lower bound

3 Noise Free Case

4 The Real Deal

5 Experiments

Degenne, Shao and Koolen All you need is Best Response London MAB Workshop 9 / 30



Lower bound

Argument [Graves and Lai, 1997]

Fix an asymptotically consistent algorithm for structure M. Consider its
behaviour on µ ∈M, and on any alternative bandit model λ ∈M with
i∗(µ) 6= i∗(λ):

Eµ
[
N

i∗(µ)
T

]
/T → 1 but Eλ

[
N

i∗(µ)
T

]
/T → 0.

This stark difference in behaviour requires discriminating information!
Specifically,

KL
(
PT
µ

∥∥PT
λ

)
=
∑
k

Eµ[Nk
T ]d(µk , λk) ≥ lnT .
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Lower bound

Instance-Dependent Regret Lower Bound

Any asymptotically consistent algorithm for structure M must incur on
each µ ∈M regret at least

VT = min
N≥0

∑
k

Nk∆k subject to inf
λ∈Λ

∑
k

Nkd(µk , λk) ≥ lnT

where
Λ =

{
λ ∈M

∣∣ i∗(λ) 6= i∗(µ)
}

This is a (semi-infinite) covering linear program.

Degenne, Shao and Koolen All you need is Best Response London MAB Workshop 11 / 30



Lower bound

Operationalising the Lower Bound

Earlier work
At each time step

compute oracle sample counts N∗(µ̂t) and advance Nt →N∗, or

force exploration to ensure µ̂t → µ.

This talk

Reformat lower bound as zero-sum “minigame”.

Iteratively solve minigame by full information online learning.

Use iterates to advance Nt .

Add optimism to induce exploration.

Compose regret bound from minigame regret + estimation regret
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Lower bound

Minigame

We have VT = lnT
D∗ where

D∗ = max
w∈4

inf
λ∈Λ

∑
k w

kd(µk , λk)∑
k w

k∆k

w k ∝ Nk

pulls

= max
w̃∈4

inf
λ∈Λ

∑
k

w̃ k d(µk , λk)

∆k
w̃ k ∝ Nk∆k

regret

= inf
q∈4(Λ)

max
k

Eλ∼q
[
d(µk , λk)

]
∆k
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Lower bound

Illustration
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Lower bound

Overall Setup

k-learnerAdaHedge Best response

argminλ∈Λ

∑
k w

k
t d(µk , λk)

w̃t wt

λt∇t

Tracking

wt

Bandit

kt

Estimate

Xt ∼ µkt

µ̂t
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Noise Free Case

Noise-free result

Let Bkn be regret of full information online learning (AdaHedge) w. linear
losses on the simplex.

Theorem

Consider running our algorithm until infλ∈Λ
∑n

t=1

∑
k w

k
t d(µk , λk) ≥ lnT.

The iterates w1, . . . ,wn satisfy

Rn =
n∑

t=1

〈wt ,∆〉 ≤ VT +
Bkn
D∗

Note

Can get k1, . . . , kn using tracking (at cost ∆max lnK )

Standard choice gives n = O(lnT ) and
Bkn = O(

√
n) = O(

√
lnT ) = o(lnT ).
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Noise Free Case

Regret analysis

Given moves wt ∈ 4K and λt ∈ Λ, we instantiate a k-learner for the gain
function

gt(w̃) = 〈wt ,∆〉
∑
k

w̃k d(µk , λkt )

∆k

to provide regret bound

n∑
t=1

gt(w̃t) ≥ max
k

n∑
t=1

〈wt ,∆〉
d(µk , λkt )

∆k
− Bkn . (1)
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Noise Free Case

Regret analysis (ctd)

Given w̃t from the k-learner, we define player and opponent by

wk
t ∝ w̃k

t /∆k (2)

λt ∈ argmin
λ∈Λ

∑
k

wk
t d(µk , λk) (3)

to obtain

n∑
t=1

gt(w̃t) =
n∑

t=1

〈wt ,∆〉
∑
k

w̃k
t

d(µk , λkt )

∆k

(2)
=

n∑
t=1

∑
k

wk
t d(µk , λkt )

(3)
=

n∑
t=1

inf
λ∈Λ

∑
k

wk
t d(µk , λk) ≤ inf

λ∈Λ

n∑
t=1

∑
k

wk
t d(µk , λk)

(4)
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Noise Free Case

Regret analysis (ctd)

The stopping condition plus regret bounds (1) and (4) result in

lnT + Bkn ≥ max
k

n∑
t=1

〈wt ,∆〉
d(µk , λkt )

∆k
= Rn max

k

n∑
t=1

〈wt ,∆〉
Rn

d(µk , λkt )

∆k

≥ Rn inf
q∈4(Λ)

max
k

Eλ∼q
[
d(µk , λk)

]
∆k

= RnD
∗

where we abbreviated Rn =
∑n

t=1 〈wt ,∆〉. All in all we showed

Rn ≤ VT +
Bkn
D∗
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Noise Free Case

On Symmetry

Game-theoretic equilibrium is symmetric concept.

Can also focus on λ-learner instead of k-learner. Interesting trade-offs

More complex domain λ ∈ Λ.

No need for tracking, best response in k is “pure” arm.

Will show both in experiments.
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The Real Deal

Scaling up

Can use what we developed so far to compute oracle weights every round
(OSSB). Efficient for every bandit structure for which best response is
tractable.

But we can do much better!
Idea:

Run only one iteration every round.

Deal with unknown µ.

Exploitation.

some issues . . .
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The Real Deal

First Issue

Actually, ∆∗ = 0. And we were dividing by it all over the place.

Idea: run on ∆k
ε = max

{
∆k , ε

}
.

Theorem

lim
ε→0

V ε
T = VT

In several cases we can show perturbed value is V ε
T ≤ VT +

√
2εVT .
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The Real Deal

One iteration every round

Replace µ by estimate µ̂t .

Add optimism to force exploration.
We introduce upper confidence bounds on the ratio KL/gap.

UCBk
s = sup

ξ∈Cks−1

d(ξ, λkt )

max
{
εs , 1{k 6= js}

[
µ+
s−1 − ξ

]}
where Cks−1 =

µ̂ks−1 ±

√√√√ ln(njss−1,N
k
s−1)

Nk
s−1

 .

We do not know identity of the best arm, and hence Λ (domain of
λ) Estimate best arm, and run K independent interactions.
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The Real Deal

Algorithm

1: Pull each arm once and get µ̂K .
2: for t = K + 1, · · · ,T do
3: if ∃i ∈ [K ], minλ∈¬i

∑
k N

k
t−1d(µ̂k

t−1, λ
k) > f (t − 1) then

4: kt = i (if there are several suitable i , pull any one of them)
5: else

6: µ+
t−1, jt = (arg) maxj∈[K ] µ̂

j
t−1 +

√
ln(njt−1,N

j
t−1)

N j
t−1

.

7: get w̃t from learner Ak
jt

, compute wk
t ∝ w̃k

t /∆̃k .
8: compute best response λt .

9: Compute UCBk
t = maxξ∈[µ̂k

t−1−...,µ̂k
t−1+...]

[
d(ξ,λk

t )

max{εt ,1{k 6=jt}[µ+
t−1−ξ]}

]
10: kt = argmink∈[K ] N

k
t−1 −

∑t
s=1 w

k
s . . Tracking

11: end if
12: Access X kt

t , update µ̂t and Nt

13: end for
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Experiments

Experiment: Sparse
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Experiments

Experiment: Linear
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Experiments

Conclusion

Game equilibrium based technique for matching instance dependent
lower bounds for structured stochastic bandits.
All you need is Best Response oracle.

Fine tuning

What about “lower-order” terms not scaling with lnT?

Is minigame interaction “easy data”? MetaGrad [Van Erven and
Koolen, 2016]

Minigames for other problems?

Thank you!
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