Pure Exploration with Multiple Correct Answers

Rémy Degenne

Wouter M. Koolen

CWI
Centrum Wiskunde & Informatica
Outline

1. Introduction
2. Model
3. TaS for BAI
4. Discontinuous single-answer problems
5. Multiple-answer problems
6. Conclusion
Query:
- most effective drug dose?
- most appealing website layout?
- safest next robot action?

Efficient systems
Sample complexity as function of query and environment

Degenne and Koolen
Multiple Correct Answers
Google '19
Topic: Pure Exploration

Query:
- most effective drug dose?
- most appealing website layout?
- safest next robot action?

Main scientific questions
- **Efficient** systems
- **Sample complexity** as function of query and environment
We study queries w. multiple correct answers. E.g. find an ϵ-optimal drug.

The leading existing approach fails due to non-continuity.

We propose a stabilisation called “Sticky Track-and-Stop”
Outline

1. Introduction
2. Model
3. TaS for BAI
4. Discontinuous single-answer problems
5. Multiple-answer problems
6. Conclusion
Formal model

Environment (Multi-armed bandit model)

\(K \) distributions parameterised by their means \(\mu = (\mu_1, \ldots, \mu_K) \).
Set of possible environments: \(\mathcal{M} \).
Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \ldots, \mu_K)$. Set of possible environments: \mathcal{M}.

Query

Set of possible answers \mathcal{I}. **Correct answer** function $i^* : \mathcal{M} \rightarrow \mathcal{I}$.
Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \ldots, \mu_K)$. Set of possible environments: \mathcal{M}.

Query

Set of possible answers \mathcal{I}. Correct answer function $i^* : \mathcal{M} \rightarrow \mathcal{I}$.

Strategy

- **Stopping rule** $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{i} \in [K]$.

Two objectives: sample efficiency τ and correctness $\hat{i} = i^*(\mu)$.

Degenne and Koolen '19 6 / 28
Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \ldots, \mu_K)$. Set of possible environments: \mathcal{M}.

Query

Set of possible answers \mathcal{I}. **Correct answer** function $i^*: \mathcal{M} \rightarrow \mathcal{I}$.

Strategy

- **Stopping rule** $\tau \in \mathbb{N}$
- In round $t \leq \tau$ **sampling rule** picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- **Recommendation rule** $\hat{i} \in [K]$.

Realisation of interaction: $(A_1, X_1), \ldots, (A_\tau, X_\tau), \hat{i}$.
Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \ldots, \mu_K)$. Set of possible environments: \mathcal{M}.

Query

Set of possible answers \mathcal{I}. **Correct answer** function $i^* : \mathcal{M} \to \mathcal{I}$.

Strategy

- **Stopping rule** $\tau \in \mathbb{N}$
- In round $t \leq \tau$ **sampling rule** picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- **Recommendation rule** $\hat{i} \in [K]$.

Realisation of interaction: $(A_1, X_1), \ldots, (A_\tau, X_\tau), \hat{i}$.

Two objectives: sample efficiency τ and correctness $\hat{i} = i^*(\mu)$.
Goal: PAC learning

Definition

Fix small confidence $\delta \in (0, 1)$. A strategy is δ-correct if

$$\mathbb{P}_\mu(\hat{i} \neq i^*(\mu)) \leq \delta$$

for every bandit model $\mu \in \mathcal{M}$.
Goal: PAC learning

Definition

Fix small confidence $\delta \in (0, 1)$. A strategy is δ-correct if

$$\mathbb{P}_\mu(\hat{i} \neq i^*(\mu)) \leq \delta$$

for every bandit model $\mu \in \mathcal{M}$.

Goal: minimise sample complexity $\mathbb{E}_\mu[\tau]$ over all δ-correct strategies.
Examples w. 2 arms

<table>
<thead>
<tr>
<th>Problem name</th>
<th>Best Arm</th>
<th>Minimum Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible answers \mathcal{I}</td>
<td>$[K]$</td>
<td>${\text{lo, hi}}$</td>
</tr>
<tr>
<td>Correct answer $i^*(\mu)$</td>
<td>$\arg\max_k \mu_k$</td>
<td>${\text{lo}}$ if $\min_k \mu_k < \gamma$</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Model
3. TaS for BAI
4. Discontinuous single-answer problems
5. Multiple-answer problems
6. Conclusion
Define the alternative to answer $i \in \mathcal{I}$ by $\neg i = \{ \lambda | i^*(\lambda) \neq i \}$.

Theorem (Castro 2014, Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model μ,

$$E_{\mu}[\tau] \geq T^*(\mu) \ln \frac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by

$$\frac{1}{T^*(\mu)} = \max_{w \in \Delta_K} \min_{\lambda} \sum_{i=1}^{K} w_i \text{KL}(\mu_i \| \lambda_i).$$

Intuition (going back to Lai and Robbins [1985]): if observations are likely under both μ and λ, yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.
Define the **alternative** to answer $i \in \mathcal{I}$ by $\neg i = \{ \lambda | i^*(\lambda) \neq i \}$.

Theorem (Castro 2014, Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model μ

$$\mathbb{E}_\mu[\tau] \geq T^*(\mu) \ln \frac{1}{\delta}$$

where the **characteristic time** $T^*(\mu)$ is given by

$$\frac{1}{T^*(\mu)} = \max_{w \in \Delta_K} \min_{\lambda \in \neg i^*(\mu)} \sum_{i=1}^{K} w_i \text{KL}(\mu_i || \lambda_i).$$
Instance-Dependent Sample Complexity Lower bound

Define the \textbf{alternative} to answer \(i \in \mathcal{I} \) by
\[-i = \{ \lambda | i^*(\lambda) \neq i \} \].

\textbf{Theorem (Castro 2014, Garivier and Kaufmann 2016)}

Fix a \(\delta \)-correct strategy. Then for every bandit model \(\mu \)
\[\mathbb{E}_{\mu} [\tau] \geq T^* (\mu) \ln \frac{1}{\delta} \]

where the \textbf{characteristic time} \(T^* (\mu) \) is given by
\[\frac{1}{T^* (\mu)} = \max_{w \in \Delta K} \min_{\lambda \in -i^*(\mu)} \sum_{i=1}^{K} w_i \text{KL}(\mu_i || \lambda_i). \]

\textbf{Intuition (going back to Lai and Robbins [1985])}: if observations are likely
under both \(\mu \) and \(\lambda \), yet \(i^*(\mu) \neq i^*(\lambda) \), then learner cannot stop and be
correct in both.
Example

Best Arm identification: \(i^*(\mu) = \arg\max_i \mu_i \).

\(K = 5 \) arms, Bernoulli \(\mu = (0, 0.1, 0.2, 0.3, 0.4) \).

\[
T^*(\mu) = 200.4 \quad w^*(\mu) = (0.45, 0.46, 0.06, 0.02, 0.01)
\]

At \(\delta = 0.05 \), the time gets multiplied by \(\ln \frac{1}{\delta} = 3.0 \).
Operationalisation of the Oracle Weights

Look at the lower bound again. Any good algorithm must sample with optimal (oracle) proportions

\[w^*(\mu) = \arg\max_{w \in \Delta_K} \min_{\lambda \in \Lambda^*} \sum_{i=1}^{K} w_i \text{KL}(\mu_i \| \lambda_i) \]
Operationalisation of the Oracle Weights

Look at the lower bound again. Any good algorithm must sample with optimal (oracle) proportions

\[w^*(\mu) = \arg\max_{w \in \Delta_K} \min_{\lambda \in -\nu^*(\mu)} \sum_{i=1}^{K} w_i \KL(\mu_i \parallel \lambda_i) \]

Track-and-Stop [Garivier and Kaufmann, 2016]

Idea: draw \(A_t \sim w^*(\hat{\mu}(t)) \).

- Ensure \(\hat{\mu}(t) \to \mu \) by “forced exploration”
- assuming \(w^* \) is continuous, this ensures \(w^*(\hat{\mu}_t) \to w^*(\mu) \).
- hence \(N_i(t)/t \to w_i^* \)
- Draw arm with \(N_i(t)/t \) below \(w_i^* \) (tracking)
Outline

1. Introduction
2. Model
3. TaS for BAI
4. Discontinuous single-answer problems
5. Multiple-answer problems
6. Conclusion
About that continuity assumption?

Can w^* be discontinuous?
About that continuity assumption?

Can w^* be discontinuous?

Example: Minimum Threshold
Recall oracle weights are given by

\[w^*(\mu) = \arg\max_{w \in \Delta} \inf_{\lambda \in \nu^*(\mu)} \sum_a w_a d(\mu_a, \lambda_a) \]
Recall oracle weights are given by

$$w^*(\mu) = \arg\max_{w \in \triangle} \inf_{\lambda \in \neg i^*(\mu)} \sum_a w_a d(\mu_a, \lambda_a)$$

Theorem

w^*, when viewed as a **set-valued** function, is upper hemicontinuous. Moreover, its output is always a convex sets.
Intuition

On bandit model μ, our empirical distribution will be a convex combination of δ_1 and δ_2.
Putting it all together

TaS:

- Forced exploration to ensure $\hat{\mu}_t \rightarrow \mu$.
- Compute $w_t = w^*(\hat{\mu}_t)$.
- Choose arm A_{t+1} to ensure $N_i(t)/t \rightarrow w_t$ (Tracking)
Putting it all together

TaS:
- Forced exploration to ensure $\hat{\mu}_t \to \mu$.
- Compute $w_t = w^*(\hat{\mu}_t)$.
- Choose arm A_{t+1} to ensure $N_i(t)/t \to w_t$ (Tracking)

Theorem

Track-and-Stop with C-tracking is δ-correct with asymptotically optimal sample complexity.
Putting it all together

TaS:
- Forced exploration to ensure $\hat{\mu}_t \to \mu$.
- Compute $w_t = w^*(\hat{\mu}_t)$.
- Choose arm A_{t+1} to ensure $N_i(t)/t \to w_t$ (Tracking)

Theorem

Track-and-Stop with C-tracking is δ-correct with asymptotically optimal sample complexity.

Theorem

Track-and-Stop with D tracking may fail to converge.
Outline

1 Introduction
2 Model
3 TaS for BAI
4 Discontinuous single-answer problems
5 Multiple-answer problems
6 Conclusion
Updated Problem

We now assume a set-valued correct answer function \(i^* : \mathcal{M} \rightarrow 2^\mathcal{I} \).
We now assume a **set-valued** correct answer function $i^*: \mathcal{M} \rightarrow 2^{\mathcal{I}}$.

Examples:

<table>
<thead>
<tr>
<th>Problem</th>
<th>ϵ Best Arm</th>
<th>Any Low Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answers</td>
<td>\mathcal{I}</td>
<td>$[K] \cup {\text{no}}$</td>
</tr>
<tr>
<td>Correct</td>
<td>$i^*(\mu)$</td>
<td>${k</td>
</tr>
<tr>
<td></td>
<td></td>
<td>${\text{no}}$ if $\min_k \mu_k > \gamma$</td>
</tr>
</tbody>
</table>
Rethinking the lower bound

For single-answer problems, lower bound is based on KL contraction.
Rethinking the lower bound

For single-answer problems, lower bound is based on KL contraction.

With multiple correct answers, this gives the wrong leading constant.
Rethinking the lower bound

For single-answer problems, lower bound is based on KL contraction.

With multiple correct answers, this gives the wrong leading constant.

Theorem

Any δ-correct algorithm verifies

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_\mu[\tau_\delta]}{\log(1/\delta)} \geq T^*(\mu) := D(\mu)^{-1}$$

where

$$D(\mu) = \max_{i \in i^*(\mu)} \max_{w \in \Delta_K} \inf_{\lambda \notin i} \sum_{k=1}^{K} w_k d(\mu_k, \lambda_k)$$

for any multiple answer instance μ with sub-Gaussian arm distributions.
Proof ideas

- **Min-max swap**: For any answer $i \in \mathcal{I}$,

$$
\max_{w \in \Delta_K} \inf_{\lambda \in \neg i} \sum_{k=1}^{K} w_k d(\mu_k, \lambda_k) = \inf \max_{\mathbb{P}} \mathbb{E}_{\lambda \sim \mathbb{P}} [d(\mu_k, \lambda_k)].
$$

\Rightarrow get \mathbb{P}^*. Say weights q_1, \ldots, q_K on $\lambda^1, \ldots, \lambda^K$.

- **Look at likelihood ratio**

$$
L_n = -\ln \frac{d \mathbb{P}^*}{d \mathbb{P} \mu} \leq \sum_{k} q_k \ln \frac{d \mathbb{P}^*}{d \mathbb{P} \lambda_k}.
$$

It follows that for any $\gamma \in \mathbb{R}$ we have

$$
\{L_n > \gamma\} \subseteq \left\{ \sum_{k} q_k \sum_{a} N_n, a d(\mu_a, \lambda^k_a) + \sum_{k} q_k M_n(\mu, \lambda^k) > \gamma \right\}.
$$

\Rightarrow cannot distinguish μ from at least one λ^k.
Matching the lower bound

New problem: **real discontinuity**.

\[
\max_{i \in i^*(\mu)} \max_{w \in \Delta_K} \inf_{\lambda \in \neg i} \sum_{k=1}^{K} w_k d(\mu_k, \lambda_k)
\]

Example:

\[
w^* = \delta_1, \quad w^* = \delta_2
\]
Solution: Make it sticky

Sampling rule: find least (in sticky order) oracle answer in the aggressive confidence region C_t. Track its oracle weights at $\hat{\mu}_t$.

![Diagram showing the approach to making the problem sticky](image-url)
Main Result

When coupled with a good stopping rule,

Theorem

*Sticky Track-and-Stop is asymptotically optimal, i.e. it verifies for all $\mu \in \mathcal{M}$,

$$
\lim_{\delta \to 0} \frac{\mathbb{E}_\mu[\tau_\delta]}{\log(1/\delta)} \to \frac{1}{D(\mu)}.
$$

How bad is “Teflon” TaS?

Story: arcsine law.
Outline

1. Introduction
2. Model
3. TaS for BAI
4. Discontinuous single-answer problems
5. Multiple-answer problems
6. Conclusion
Conclusion

- Pure Exploration currently going through a renaissance
- Instance-optimal identification algorithms
 - Best Arm
 - Combinatorial best action
 - Game Tree Search
 - ...
- Moving toward more complex queries. RL on the horizon ...
- Useful submodules
Many questions remain open

- Practically efficient algorithms
- Remove forced exploration
- Moderate confidence $\delta \not\to 0$ regime [Simchowitz et al., 2017].
- Understand sparsity patterns
- Dynamically expanding horizon
Many questions remain open

- Practically efficient algorithms
- Remove forced exploration
- Moderate confidence $\delta \not\to 0$ regime [Simchowitz et al., 2017].
- Understand sparsity patterns
- Dynamically expanding horizon

Thank you! And let’s talk!