Pure Exploration with Multiple Correct Answers

Rémy Degenne

Wouter M. Koolen

Centrum Wiskunde & Informatica

Outline

1 Introduction

2 Model

3 TaS for BAI

Discontinuous single-answer problems

5 Multiple-answer problems

Onclusion

Topic: Pure Exploration

Topic: Pure Exploration

Main scientific questions

- Efficient systems
- Sample complexity as function of query and environment

This Talk

- We study queries w. **multiple correct answers**. E.g. find an *e*-optimal drug.
- The leading existing approach fails due to non-continuity.
- We propose a stabilisation called "Sticky Track-and-Stop"

Outline

1 Introduction

3 TaS for BAI

Discontinuous single-answer problems

5 Multiple-answer problems

Onclusion

Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \dots, \mu_K)$. Set of possible environments: \mathcal{M} .

Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \dots, \mu_K)$. Set of possible environments: \mathcal{M} .

Query

Set of possible answers \mathcal{I} . **Correct answer** function $i^* : \mathcal{M} \to \mathcal{I}$.

Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \dots, \mu_K)$. Set of possible environments: \mathcal{M} .

Query

Set of possible answers \mathcal{I} . **Correct answer** function $i^* : \mathcal{M} \to \mathcal{I}$.

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{I} \in [K]$.

Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \dots, \mu_K)$. Set of possible environments: \mathcal{M} .

Query

Set of possible answers \mathcal{I} . **Correct answer** function $i^* : \mathcal{M} \to \mathcal{I}$.

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{I} \in [K]$.

Realisation of interaction: $(A_1, X_1), \ldots, (A_{\tau}, X_{\tau}), \hat{I}$.

Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \dots, \mu_K)$. Set of possible environments: \mathcal{M} .

Query

Set of possible answers \mathcal{I} . **Correct answer** function $i^* : \mathcal{M} \to \mathcal{I}$.

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{I} \in [K]$.

Realisation of interaction: $(A_1, X_1), \ldots, (A_{\tau}, X_{\tau}), \hat{I}$.

Two objectives: sample efficiency τ and correctness $\hat{l} = i^*(\mu)$.

Goal: PAC learning

Definition

Fix small confidence $\delta \in (0, 1)$. A strategy is δ -correct if

$$\mathbb{P}_{oldsymbol{\mu}}ig(\hat{m{l}}
eq i^*(oldsymbol{\mu})ig) \ \leq \ \delta$$
 for every bandit model $oldsymbol{\mu}\in\mathcal{M}.$

Goal: PAC learning

Definition

Fix small confidence $\delta \in (0, 1)$. A strategy is δ -correct if

$$\mathbb{P}_{oldsymbol{\mu}}ig(\hat{oldsymbol{l}}
eq i^*(oldsymbol{\mu})ig) \ \leq \ \delta$$
 for every bandit model $oldsymbol{\mu}\in\mathcal{M}.$

Goal: minimise sample complexity $\mathbb{E}_{\mu}[\tau]$ over all δ -correct strategies.

Examples w. 2 arms

Problem nameBesPossible answers \mathcal{I} [K]Correct answer $i^*(\mu)$ argument

Best Arm [K] argmax_k μ_k $\begin{array}{l} \mbox{Minimum Threshold} \\ \mbox{Io, hi} \\ \mbox{Io} & \mbox{if } \min_k \mu_k < \gamma \\ \mbox{hi} & \mbox{if } \min_k \mu_k > \gamma \end{array}$

Outline

1 Introduction

2 Model

3 TaS for BAI

- Discontinuous single-answer problems
- 5 Multiple-answer problems

Onclusion

Instance-Dependent Sample Complexity Lower bound

Define the alternative to answer $i \in \mathcal{I}$ by $\neg i = \{\lambda | i^*(\lambda) \neq i\}$.

Instance-Dependent Sample Complexity Lower bound

Define the **alternative** to answer $i \in \mathcal{I}$ by $\neg i = \{\lambda | i^*(\lambda) \neq i\}$.

Theorem (Castro 2014, Garivier and Kaufmann 2016) Fix a δ -correct strategy. Then for every bandit model μ

$$\mathbb{E}_{oldsymbol{\mu}}[au] \; \geq \; \mathcal{T}^*(oldsymbol{\mu}) \ln rac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by

$$\frac{1}{\mathcal{T}^*(\boldsymbol{\mu})} = \max_{\boldsymbol{w} \in \bigtriangleup_K} \min_{\boldsymbol{\lambda} \in \neg i^*(\boldsymbol{\mu})} \sum_{i=1}^K w_i \operatorname{KL}(\mu_i \| \lambda_i).$$

Instance-Dependent Sample Complexity Lower bound

Define the **alternative** to answer $i \in \mathcal{I}$ by $\neg i = \{\lambda | i^*(\lambda) \neq i\}$.

Theorem (Castro 2014, Garivier and Kaufmann 2016) Fix a δ -correct strategy. Then for every bandit model μ

$$\mathbb{E}_{oldsymbol{\mu}}[au] \; \geq \; \mathcal{T}^*(oldsymbol{\mu}) \ln rac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by

$$\frac{1}{\mathcal{T}^*(\boldsymbol{\mu})} = \max_{\boldsymbol{w} \in \bigtriangleup_K} \min_{\boldsymbol{\lambda} \in \neg i^*(\boldsymbol{\mu})} \sum_{i=1}^K w_i \operatorname{KL}(\mu_i \| \lambda_i).$$

Intuition (going back to Lai and Robbins [1985]): if observations are likely under both μ and λ , yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.

Example

Best Arm identification: $i^*(\mu) = \operatorname{argmax}_i \mu_i$. K = 5 arms, Bernoulli $\mu = (0, 0.1, 0.2, 0.3, 0.4)$.

$$\mathcal{T}^{*}(\mu) = 200.4$$
 $w^{*}(\mu) = (0.45, 0.46, 0.06, 0.02, 0.01)$

At $\delta = 0.05$, the time gets multiplied by $\ln \frac{1}{\delta} = 3.0$.

Operationalisation of the Oracle Weights

Look at the lower bound again. Any good algorithm **must** sample with optimal (**oracle**) proportions

$$m{w}^*(m{\mu}) = rgmax_{m{w}\in riangle_K} \min_{m{\lambda}\in
eg i^*(m{\mu})} \sum_{i=1}^K w_i \operatorname{\mathsf{KL}}(\mu_i \| \lambda_i)$$

Operationalisation of the Oracle Weights

Look at the lower bound again. Any good algorithm **must** sample with optimal (**oracle**) proportions

$$w^*(oldsymbol{\mu}) \;=\; rgmax \min_{oldsymbol{w}\in riangle_K} \, \min_{oldsymbol{\lambda}\in
eg i^*(oldsymbol{\mu})} \; \sum_{i=1}^K w_i \, \mathsf{KL}(\mu_i \| \lambda_i)$$

Track-and-Stop [Garivier and Kaufmann, 2016]

Idea: draw $A_t \sim w^*(\hat{\mu}(t))$.

- Ensure $\hat{\mu}(t)
 ightarrow \mu$ by "forced exploration"
- assuming w^* is continuous, this ensures $w^*(\hat{\mu}_t) o w^*(\mu)$.
- hence $N_i(t)/t \rightarrow w_i^*$
- Draw arm with $N_i(t)/t$ below w_i^* (tracking)

Outline

1 Introduction

2 Model

3 TaS for BAI

4 Discontinuous single-answer problems

5 Multiple-answer problems

Onclusion

About that continuity assumption?

Can w^* be discontinuous?

About that continuity assumption?

Can w^* be discontinuous?

Example: Minimum Threshold

Continuity restored

Recall oracle weights are given by

$$m{w}^*(m{\mu}) = rgmax_{m{w}\in riangle} \inf_{m{\lambda}\in
eg i^*(m{\mu})} \sum_{m{a}} w_{m{a}} d(\mu_{m{a}},\lambda_{m{a}})$$

Continuity restored

Recall oracle weights are given by

$$w^*(\mu) = rgmax_{oldsymbol{w}\in riangle} \inf_{oldsymbol{\lambda}\in
eg i^*(\mu)} \sum_{oldsymbol{a}} w_{oldsymbol{a}} d(\mu_{oldsymbol{a}},\lambda_{oldsymbol{a}})$$

Theorem

 w^* , when viewed as a **set-valued** function, is upper hemicontinuous. Moreover, its output is always a convex sets.

Intuition

On bandit model μ_{i} our empirical distribution will be a convex combination of δ_1 and $\delta_2.$

Putting it all together

TaS:

- Forced exploration to ensure $\hat{\mu}_t
 ightarrow \mu$.
- Compute $oldsymbol{w}_t = oldsymbol{w}^*(\hat{oldsymbol{\mu}}_t).$
- Choose arm A_{t+1} to ensure $N_i(t)/t o w_t$ (Tracking)

Putting it all together

TaS:

- Forced exploration to ensure $\hat{\mu}_t
 ightarrow \mu$.
- Compute $m{w}_t = m{w}^*(\hat{m{\mu}}_t).$
- Choose arm A_{t+1} to ensure $N_i(t)/t o w_t$ (Tracking)

Theorem

Track-and-Stop with C-tracking is δ -correct with asymptotically optimal sample complexity.

Putting it all together

TaS:

- Forced exploration to ensure $\hat{\mu}_t
 ightarrow \mu$.
- Compute $m{w}_t = m{w}^*(\hat{m{\mu}}_t).$
- Choose arm A_{t+1} to ensure $N_i(t)/t o w_t$ (Tracking)

Theorem

Track-and-Stop with C-tracking is δ -correct with asymptotically optimal sample complexity.

Theorem

Track-and-Stop with D tracking may fail to converge.

Outline

1 Introduction

2 Model

3 TaS for BAI

Discontinuous single-answer problems

5 Multiple-answer problems

Conclusion

Updated Problem

We now assume a **set-valued** correct answer function $i^* : \mathcal{M} \to 2^{\mathcal{I}}$.

Updated Problem

We now assume a **set-valued** correct answer function $i^* : \mathcal{M} \to 2^{\mathcal{I}}$.

Examples:Any Low ArmProblem
$$\epsilon$$
 Best ArmAny Low ArmAnswers \mathcal{I} $[K]$ $[K] \cup \{no\}$ Correct $i^*(\mu)$ $\{k \mid \mu_k \ge \max_j \mu_j - \epsilon\}$ $\{k \mid \mu_k \le \gamma\}$ if $\min_k \mu_k < \gamma$
 $\{no\}$

Rethinking the lower bound

For single-answer problems, lower bound is based on KL contraction.

Rethinking the lower bound

For single-answer problems, lower bound is based on KL contraction.

With multiple correct answers, this gives the wrong leading constant.

Rethinking the lower bound

For single-answer problems, lower bound is based on KL contraction.

With multiple correct answers, this gives the wrong leading constant.

Theorem

Any δ -correct algorithm verifies

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}]}{\log(1/\delta)} \geq T^{*}(\boldsymbol{\mu}) := D(\boldsymbol{\mu})^{-1}$$

where

$$D(\boldsymbol{\mu}) = \max_{i \in i^*(\boldsymbol{\mu})} \max_{\boldsymbol{w} \in \Delta_K} \inf_{\boldsymbol{\lambda} \in \neg i} \sum_{k=1}^K w_k d(\mu_k, \lambda_k)$$

for any multiple answer instance μ with sub-Gaussian arm distributions.

Proof ideas

• Min-max swap: For any answer $i \in \mathcal{I}$,

$$\max_{w \in \Delta_{\kappa}} \inf_{\lambda \in \neg i} \sum_{k=1}^{\kappa} w_k d(\mu_k, \lambda_k) = \inf_{\mathbb{P}} \max_{k \in [\kappa]} \mathbb{E}_{\lambda \sim \mathbb{P}} \left[d(\mu_k, \lambda_k) \right].$$

 \Rightarrow get \mathbb{P}^* . Say weights q_1, \ldots, q_K on $\lambda^1, \ldots, \lambda^K$.

Look at likelihood ratio

$$L_n = -\ln \frac{\mathrm{d} \mathbb{P}^*}{\mathrm{d} \mathbb{P}_{\mu}} \leq \sum_k q_k \ln \frac{\mathrm{d} \mathbb{P}_{\mu}}{\mathrm{d} \mathbb{P}_{\lambda^k}}$$

It follows that for any $\gamma \in \mathbb{R}$ we have

$$\{L_n > \gamma\} \subseteq \Big\{\underbrace{\sum_k q_k \sum_a N_{n,a} d(\mu_a, \lambda_a^k)}_{\leq \text{ value}} + \underbrace{\sum_k q_k M_n(\mu, \lambda^k)}_{\text{martingale}} > \gamma\Big\}.$$

 \Rightarrow cannot distinguish μ from at least one λ^k .

Matching the lower bound

New problem: real discontinuity.

$$\max_{i \in i^*(\boldsymbol{\mu})} \max_{\boldsymbol{w} \in \triangle_K} \inf_{\boldsymbol{\lambda} \in \neg i} \sum_{k=1}^K w_k d(\mu_k, \lambda_k)$$

Example:

Solution: Make it sticky

Sampling rule: find least (in sticky order) oracle answer in the aggressive confidence region C_t . Track its oracle weights at $\hat{\mu}_t$.

<

<

Main Result

When coupled with a good stopping rule,

Theorem

Sticky Track-and-Stop is asymptotically optimal, i.e. it verifies for all $\mu \in \mathcal{M}$,

$$\lim_{\delta o 0} rac{\mathbb{E}_{oldsymbol{\mu}}[au_{\delta}]}{\log(1/\delta)} o rac{1}{D(oldsymbol{\mu})}$$
 .

How bad is "Teflon" TaS?

Story: arcsine law.

Outline

1 Introduction

2 Model

3 TaS for BAI

- Discontinuous single-answer problems
- 5 Multiple-answer problems

6 Conclusion

Conclusion

- Pure Exploration currently going through a renaissance
- Instance-optimal identification algorithms
 - Best Arm
 - Combinatorial best action
 - Game Tree Search
 - ▶ ...
- Moving toward more complex queries. RL on the horizon
- Useful submodules

Many questions remain open

- Practically efficient algorithms
- Remove forced exploration
- Moderate confidence $\delta \not\rightarrow 0$ regime [Simchowitz et al., 2017].
- Understand sparsity patterns
- Dynamically expanding horizon

Many questions remain open

- Practically efficient algorithms
- Remove forced exploration
- Moderate confidence $\delta \not\rightarrow 0$ regime [Simchowitz et al., 2017].
- Understand sparsity patterns
- Dynamically expanding horizon

Thank you! And let's talk!