Introduction

What is Pure Exploration?
Relation to Reinforcement Learning?
Why care?
 ▶ Pure Exploration problems occur as sub-problems in RL!
 ▶ Novel/interesting/powerful PE learning algorithms! “Fresh”
My focus: Pure Exploration Renaissance (2016)
 1. Track-and-Stop algorithm for Best Arm Identification
 2. BAI-MCTS approach for Game Tree Search
 3. Murphy Sampling for Games Trees of “depth 1.5”
1 Introduction

2 Relation of RL and PE

3 Pure Exploration Intro: Best Arm Identification
 - Model
 - Sample Complexity Lower Bound
 - Algorithms

4 Game Tree Search
 - Game Trees of Arbitrary Depth
 - Confidence Intervals on Min/Max
 - Game Trees of Depth 1.5 (Maximum/Minimum)
 - Results

5 Conclusion
Relation of RL and PE

Reinforcement Learning
- MDP
- Exploration/Exploitation
- State

Relation of RL and PE
- Regret minimisation
 - MAB
 - Exploration/Exploitation
 - No State

Pure Exploration
- MAB + Structured Query
- Exploration only
- Structure

Best Arm Identification
- MAB
- Exploration only
- No State

Koolen (CWI)
Example 1: Phased Q-Learning

[Even-Dar, Mannor, and Mansour, 2002]

Early example(s) of Pure Exploration as sub-module in RL

Initialise $V_0(s) := 0$ for each state s.

for phase $i = 1, 2, \ldots$ do

 for each state s do

 Run **Best Arm Identification** algorithm on

 $$a \mapsto r + \gamma V_i(s') \quad \text{where} \quad (r, s') \sim \mathbb{P}(r, s'|s, a)$$

 Store estimate in $V_{i+1}(s)$.

 end for

end for

Example 2: AlphaZero

MCTS as Policy/Value Improvement Operator

Randomise network parameters θ_1.

\begin{itemize}
 \item for iteration $i = 1, 2, \ldots$ do
 \item for training games $j = 1, 2, \ldots$ do
 \item π_t result of MCTS from s_t with network θ_i
 \item Store $(s_1, \pi_1, z), \ldots, (s_T, \pi_T, z)$.
 \end{itemize}

end for

Train network θ_{i+1} on stored data.

end for
Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \ldots, \mu_K)$. The best arm is

$$i^* = \arg\max_{i \in [K]} \mu_i$$
Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \ldots, \mu_K)$. The best arm is

$$i^* = \arg\max_{i \in [K]} \mu_i$$

Strategy

- **Stopping rule** $\tau \in \mathbb{N}$
- In round $t \leq \tau$ **sampling rule** picks $I_t \in [K]$. See $X_t \sim \mu_{I_t}$.
- **Recommendation rule** $\hat{i} \in [K]$.
Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\mu = (\mu_1, \ldots, \mu_K)$. The best arm is

$$i^* = \arg\max_{i \in [K]} \mu_i$$

Strategy

- **Stopping rule** $\tau \in \mathbb{N}$
- **Sampling rule** In round $t \leq \tau$ picks $l_t \in [K]$. See $X_t \sim \mu_{l_t}$.
- **Recommendation rule** $\hat{i} \in [K]$.

Realisation of interaction: $(l_1, X_1), \ldots, (l_\tau, X_\tau), \hat{i}$.
Formal model

Environment (Multi-armed bandit model)

\(K \) distributions parameterised by their means \(\mu = (\mu_1, \ldots, \mu_K) \). The best arm is

\[
i^* = \arg\max_{i \in [K]} \mu_i
\]

Strategy

- **Stopping rule** \(\tau \in \mathbb{N} \)
- In round \(t \leq \tau \) sampling rule picks \(l_t \in [K] \). See \(X_t \sim \mu_{l_t} \).
- **Recommendation rule** \(\hat{i} \in [K] \).

Realisation of interaction: \((l_1, X_1), \ldots, (l_\tau, X_\tau), \hat{i} \).

Two objectives: sample efficiency \(\tau \) and correctness \(\hat{i} = i^* \).
Objective

On bandit μ, strategy $(\tau, (l_t)_t, \hat{i})$ has

- **error probability** $\mathbb{P}_\mu(\hat{i} \neq i^*(\mu))$, and
- **sample complexity** $\mathbb{E}_\mu[\tau]$.

Idea: constrain one, optimise the other.
Objective

On bandit μ, strategy $(\tau, (l_t)_t, \hat{l})$ has

- **error probability** $\mathbb{P}_\mu(\hat{l} \neq i^*(\mu))$, and
- **sample complexity** $\mathbb{E}_\mu[\tau]$.

Idea: constrain one, optimise the other.

Definition

Fix small confidence $\delta \in (0, 1)$. A strategy is δ-**correct** if

$$\mathbb{P}_\mu(\hat{l} \neq i^*(\mu)) \leq \delta$$

for every bandit model μ.

(Generalisation: output ϵ-best arm)
Objective

On bandit \(\mu \), strategy \((\tau, (I_t)_t, \hat{i})\) has

- **error probability** \(\mathbb{P}_\mu(\hat{i} \neq i^*(\mu)) \), and
- **sample complexity** \(\mathbb{E}_\mu[\tau] \).

Idea: constrain one, optimise the other.

Definition

Fix small confidence \(\delta \in (0, 1) \). A strategy is \(\delta \)-correct if

\[
\mathbb{P}_\mu(\hat{i} \neq i^*(\mu)) \leq \delta \quad \text{for every bandit model } \mu.
\]

(Generalisation: output \(\epsilon \)-best arm)

Goal: minimise \(\mathbb{E}_\mu[\tau] \) over all \(\delta \)-correct strategies.
Algorithms

- Sampling rule l_t?
- Stopping rule τ?
- Recommendation rule \hat{l}?

\[\hat{l} = \arg\max_{i \in [K]} \hat{\mu}_i(\tau) \]

where $\hat{\mu}(t)$ is empirical mean.
Instance-Dependent Sample Complexity Lower Bound

Define the alternatives to μ by $\text{Alt}(\mu) = \{\lambda | i^*(\lambda) \neq i^*(\mu)\}$.
Define the **alternatives** to μ by $\text{Alt}(\mu) = \{\lambda | i^*(\lambda) \neq i^*(\mu)\}$.

Theorem (Castro 2014, Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model μ

$$
\mathbb{E}_\mu[\tau] \geq T^*(\mu) \ln \frac{1}{\delta}
$$

where the characteristic time $T^(\mu)$ is given by*

$$
\frac{1}{T^*(\mu)} = \max_{w \in \Delta_K} \min_{\lambda \in \text{Alt}(\mu)} \sum_{i=1}^{K} w_i \text{KL}(\mu_i \| \lambda_i).
$$
Instance-Dependent Sample Complexity Lower bound

Define the alternatives to μ by $\text{Alt}(\mu) = \{\lambda | i^*(\lambda) \neq i^*(\mu)\}$.

Theorem (Castro 2014, Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model μ

$$\mathbb{E}_\mu[\tau] \geq T^*(\mu) \ln \frac{1}{\delta}$$

where the characteristic time $T^(\mu)$ is given by*

$$\frac{1}{T^*(\mu)} = \max_{w \in \Delta_K} \min_{\lambda \in \text{Alt}(\mu)} \sum_{i=1}^{K} w_i \text{KL}(\mu_i || \lambda_i).$$

Intuition (going back to Lai and Robbins [1985]): if observations are likely under both μ and λ, yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.
Example

$K = 5$ arms, Bernoulli $\mu = (0, 0.1, 0.2, 0.3, 0.4)$.

$T^*(\mu) = 200.4 \quad w^*(\mu) = (0.45, 0.46, 0.06, 0.02, 0.01)$

At $\delta = 0.05$, the time gets multiplied by $\ln \frac{1}{\delta} = 3.0$.
Sampling Rule

Look at the lower bound again. Any good algorithm must sample with optimal (oracle) proportions

\[w^*(\mu) = \arg\max_{w \in \Delta_K} \min_{\lambda \in \text{Alt}(\mu)} \sum_{i=1}^{K} w_i \text{KL}(\mu_i || \lambda_i) \]
Sampling Rule

Look at the lower bound again. Any good algorithm must sample with optimal (oracle) proportions

$$w^*(\mu) = \arg\max_{w \in \Delta_K} \min_{\lambda \in \text{Alt}(\mu)} \sum_{i=1}^{K} w_i \text{KL}(\mu_i \| \lambda_i)$$

Track-and-Stop

Idea: draw \(l_t \sim w^*(\hat{\mu}(t)) \).

- Ensure \(\hat{\mu}(t) \to \mu \) hence \(N_i(t)/t \to w_i^* \) by “forced exploration”
- Draw arm with \(N_i(t)/t \) below \(w_i^* \) (tracking)
- Computation of \(w^* \) (reduction to 1d line search)
All in all

Final result: lower and upper bound meet on every problem instance.

Theorem (Garivier and Kaufmann 2016)

For Track-and-Stop algorithm, for any bandit μ

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_\mu[\tau]}{\ln \frac{1}{\delta}} = T^*(\mu)$$
All in all

Final result: lower and upper bound meet on every problem instance.

Theorem (Garivier and Kaufmann 2016)

For Track-and-Stop algorithm, for any bandit μ

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\mu} \left[\tau \right]}{\ln \frac{1}{\delta}} = T^*(\mu)$$

Very similar optimality result for **Top Two Thompson Sampling** by Russo [2016]. Here $N_i(t)/t \to w_i^*$ result of posterior sampling.
1. Introduction

2. Relation of RL and PE

3. Pure Exploration Intro: Best Arm Identification
 - Model
 - Sample Complexity Lower Bound
 - Algorithms

4. Game Tree Search
 - Game Trees of Arbitrary Depth
 - Confidence Intervals on Min/Max
 - Game Trees of Depth 1.5 (Maximum/Minimum)
 - Results

5. Conclusion
Challenge Environment: Stochastic Game Tree Search

Problem
Determine the optimal move at the root
From sample access to the leaf payoffs

\[\mu \text{ is } \mathcal{N}(\mu, 1) \]
Challenge Environment: Stochastic Game Tree Search

Problem

Determine the **optimal move** at the root
From *sample access* to the leaf payoffs
Maximin Action Identification Problem

Find **best move at root** from samples of **leaves**.
Maximin Action Identification Problem

Find best move at root from samples of leaves.

Model [Teraoka et al., 2014]
Methods for Best Arm Identification

\[\text{max} \]
Methods for Best Arm Identification

\[\text{max} \]

LUCB, UGapE, ...
Methods for Best Arm Identification

max

LUCB, UGapE,
Reduction of MCTS to BAI

\[\text{max} \quad \text{min} \quad \text{max} \quad \text{min} \]
Reduction of MCTS to BAI
Correctness

\((\epsilon, \delta)\)-PAC algorithms

Efficiency

Sample complexity function of leaf gaps \(\Delta_\ell\)

\[
O \left(\sum_{\ell \in L} \frac{1}{\Delta_\ell^2 \vee \epsilon^2 \log \left(\frac{1}{\delta} \right)} \right)
\]
How to build confidence intervals on min/max nodes

More principled approach in [Kaufmann, Koolen, and Garivier, 2018].

Children Max node
How to build confidence intervals on min/max nodes

More principled approach in [Kaufmann, Koolen, and Garivier, 2018]. Many equal intervals ⇒ higher lower bound.
1. Introduction

2. Relation of RL and PE

3. Pure Exploration Intro: Best Arm Identification
 - Model
 - Sample Complexity Lower Bound
 - Algorithms

4. Game Tree Search
 - Game Trees of Arbitrary Depth
 - Confidence Intervals on Min/Max
 - Game Trees of Depth 1.5 (Maximum/Minimum)
 - Results

5. Conclusion
Simplify

Best Arm Identification
[Garivier and Kaufmann, 2016]
\textbf{Solved}

Depth 2
[Garivier, Kaufmann, and Koolen, 2016]
\textbf{Open}
Simple Instance: Minimum Threshold Identification

Fix threshold γ.

$$\mu^* := \min_i \mu_i \leq \gamma?$$

For $t = 1, \ldots, \tau$

- Pick leaf A_t
- See $X_t \sim \mu_{A_t}$

Recommend $\hat{m} \in \{<, >\}$

Goal: fixed confidence $\mathbb{P}_\mu \{\text{error}\} < \delta$
and small sample complexity $\mathbb{E}_\mu[\tau]$
Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016] shows sample complexity for any δ-correct algorithm is at least

$$\mathbb{E}_\mu[\tau] \geq T^*(\mu) \ln \frac{1}{\delta}.$$
Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016] shows sample complexity for any δ-correct algorithm is at least

$$E_\mu[\tau] \geq T^*(\mu) \ln \frac{1}{\delta}.$$

For our problem the characteristic time and oracle weights are

$$T^*(\mu) = \begin{cases} \frac{1}{\text{KL}(\mu^*, \gamma)} & \mu^* < \gamma, \\ \sum_a \frac{1}{\text{KL}(\mu_a, \gamma)} & \mu^* > \gamma, \end{cases}$$

$$w^*_a(\mu) = \begin{cases} 1_{a=a^*} & \mu^* < \gamma, \\ \frac{1}{\text{KL}(\mu_a, \gamma)} \sum_j \frac{1}{\text{KL}(\mu_j, \gamma)} & \mu^* > \gamma. \end{cases}$$
Dichotomous Oracle Behaviour! Sampling Rule?

\[\mu \cdot \gamma \]
Sampling Rules

- **Lower Confidence Bounds**
 Play $A_t = \text{arg min}_a \ LCB_a(t)$

- **Thompson Sampling** (π_{t-1} is posterior after t − 1 rounds)
 Sample $\theta \sim \Pi_{t-1}$, then play $A_t = \text{arg min}_a \ \theta_a$.

- **Murphy Sampling** **condition on low minimum mean**
 Sample $\theta \sim \Pi_{t-1} (\cdot | \text{min}_a \theta_a < \gamma)$, then play $A_t = \text{arg min}_a \ \theta_a$.

new
Intuition for Murphy Sampling

- When $\mu^* < \gamma$ conditioning is immaterial: $\theta \approx \mu$ and MS \equiv TS.

- When $\mu^* > \gamma$ conditioning results in $\theta \approx (\mu_1, \ldots, \gamma, \ldots, \mu_K)$. Index a lowered to γ with probability $\propto \frac{1}{\text{KL}(\mu_a, \gamma)}$ [Russo, 2016].
Murphy Sampling Rule [KKG, NIPS’18]

Theorem

Asymptotic optimality: \(N_a(t)/t \to w^*_a(\mu) \) for all \(\mu \)

<table>
<thead>
<tr>
<th>Sampling rule</th>
<th><</th>
<th>></th>
</tr>
</thead>
<tbody>
<tr>
<td>Thompson Sampling</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Lower Confidence Bounds</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Murphy Sampling</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Lemma

Any anytime sampling strategy \((A_t)_t \) ensuring \(\frac{N_t}{t} \to w^*(\mu) \) and good stopping rule \(\tau_\delta \) guarantee

\[
\limsup_{\delta \to 0} \frac{\tau_\delta}{\ln \frac{T^*}{\delta}} \leq T^*(\mu).
\]
Conclusion

- Pure Exploration currently going through a renaissance
- Instance-optimal identification algorithms
 - Best Arm
 - Game Tree Search
 - …
- Moving toward more complex queries. RL on the horizon …
- Useful submodules
Conclusion

- Pure Exploration currently going through a renaissance
- Instance-optimal identification algorithms
 - Best Arm
 - Game Tree Search
 - …
- Moving toward more complex queries. RL on the horizon . . .
- Useful submodules

Thank you! And let’s talk!