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Introduction

Grand Goal: Interactive Machine Learning

Query:

most effective drug dose?

most appealing website layout?

safest next robot action?

or

experiment

outcome
42

Main scientific questions

Efficient systems

Sample complexity as function of query and environment
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Introduction

Challenge Environment: Stochastic Game Tree Search

2

5

8 4 8 8 18 6

MAX MIN µ is N (µ, 1)

Problem

Determine the optimal move at the root

From sample access to the leaf payoffs
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Introduction

Flashback to Amsterdam Workshop [KK, NIPS’17]

s0
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Introduction

Revisit our Motivating Questions

Design of pure exploration algorithms for complex queries?
I Monte Carlo Tree Search

Valid anytime confidence intervals for derived quantities?
I maximum/minimum
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Introduction

Simplify

14 12 12 2 5 17 2 17

Best Arm Identification Depth 2
[Garivier and Kaufmann, 2016] [Garivier, Kaufmann, and Koolen, 2016]

Solved Open
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Introduction

Simple Instance: Minimum Threshold Identification

µ1 µ2 . . . µK

γ

Fix threshold γ.

µ∗ := mini µi ≶ γ?
For t = 1, . . . , τ
• Pick leaf At

• See Xt ∼ µAt

Recommend m̂ ∈ {<,>}

Goal: fixed confidence Pµ {error} < δ
and small sample complexity Eµ[τ ]
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Lower Bounds

Lower Bound

Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016] shows
sample complexity for any δ-correct algorithm is at least

Eµ[τ ] ≥ T ∗(µ) ln 1
δ .

For our problem the characteristic time and oracle weights are

T ∗(µ) =


1

d(µ∗, γ)
µ∗ < γ,∑

a

1

d(µa, γ)
µ∗ > γ,

w∗a (µ) =


1a=a∗ µ∗ < γ,

1
d(µa,γ)∑
j

1
d(µj ,γ)

µ∗ > γ.

Lower-order refinements with Rémy Degenne (postdoc @ CWI ML)
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Lower Bounds

Dichotomous Oracle Behaviour! Sampling Rule?

<

←
µ
→ γ

>

γ
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Results Sampling Rules

Sampling Rules

Lower Confidence Bounds
Play At = arg mina LCBa(t)

Thompson Sampling (Πt−1 is posterior after t − 1 rounds)

Sample θ ∼ Πt−1, then play At = arg mina θa.

new
Murphy Sampling condition on low minimum mean
Sample θ ∼ Πt−1 (·|mina θa < γ), then play At = arg mina θa.
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Results Sampling Rules

Intuition for Murphy Sampling

When µ∗ < γ conditioning is immaterial: θ ≈ µ and MS ≡ TS.

When µ∗ > γ conditioning results in θ ≈ (µ1, . . . , γ, . . . , µK ).
Index a lowered to γ with probability ∝ 1

d(µa,γ) [Russo, 2016].
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Results Sampling Rules

Main Result 1 : Murphy Sampling Rule [KKG, NIPS’18]

Theorem

Asymptotic optimality: Na(t)/t → w∗a (µ) for all µ

Sampling rule < >

Thompson Sampling
Lower Confidence Bounds
Murphy Sampling

Lemma

Any anytime sampling strategy (At)t ensuring Nt
t → w∗(µ) and good

stopping rule τδ guarantee lim supδ→0
τδ

ln 1
δ

≤ T ∗(µ).
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Results Sampling Rules

Numerical Results: sample complexity on <

µ = linspace(−1, 1, 10) ∈ H<
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MS + Aggregate
LCB + Box
MS + Box
LCB + GLRT
MS + GLRT
Lower Bound

Sample complexity E[τδ] as a function of ln(1/δ). Throughout γ = 0.
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Results Sampling Rules

Numerical Results: sample complexity on >

µ = linspace(1/2, 1, 5) ∈ H>
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Lower Bound

Sample complexity E[τδ] as a function of ln(1/δ). Throughout γ = 0.
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Results Sampling Rules

Numerical Results: proportions on <

µ = linspace(−1, 1, 10) ∈ H<
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empirical proportions versus theoretical optimal weights
LCB sampling rule
MS sampling rule
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Optimal Weights

Sampling proportions vs oracle, δ = e−23.

Kaufmann, Koolen, Garivier Sequential Test for the Lowest Mean CWI/INRIA ’18 17 / 24



Results Sampling Rules

Numerical Results: proportions on >

µ = linspace(1/2, 1, 5) ∈ H>
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Results Confidence Intervals

(Non-Asymptotic) Adaptivity

Multiple low arms
identical or similar

⇒
{

conclude µ∗ < γ faster

tighter confidence interval for µ∗
?
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Results Confidence Intervals

Confidence Interval for Minimum

For LCB we adopt the obvious LCBmin(t) = mina LCBa(t).

For UCB we investigate three approaches:

Box: Straightforward idea: UCBmin(t) = mina UCBa(t).

GLRT: New sum-of-deviations confidence bound.

Agg: Pool samples from multiple arms. Upper bound on any
average is upper bound on minimum. Biased but narrower.
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Results Confidence Intervals

Main Result 2: Deviation Inequalities [KKG, NIPS’18]

We identify a threshold function T (x) = x + o(x) such that for every
fixed subset S ⊆ [K ], w.h.p. ≥ 1− δ,

∀t :

[
NS(t)d+

(
µ̂S(t),min

a∈S
µa
)
− ln lnNS(t)

]+

≤ T
(
ln 1

δ

)
,

∀t :
∑
a∈S

[
Na(t)d+

(
µ̂a(t),min

a∈S
µa
)
− ln lnNa(t)

]+

≤ |S|T

(
ln 1

δ

|S|

)
.

Weighted union bound over subsets learns useful low-mean arms.
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Results Confidence Intervals

Numerical Results
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UCB for minimum: Agg dominates Box with 1, 3 and 10 low arms.
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Results Confidence Intervals

Numerical Results
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Agg beats Box and GLRT in adapting to the number k of low arms. Here
µa ∈ {−1, 0} and γ = 0.
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Conclusion

What’s Next

Deep trees
Extension to regular depth 2 by Federico Girotti (MSc @ U. Milan)

Adaptive tree expansion

Foundation for MCTS and RL

Thank you!
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