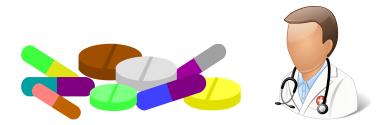
Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search

Nederlands Mathematisch Congres, Session on Mathematics of Machine Learning Wednesday 4th April, 2018 Outline

3 Sample Complexity Lower Bound

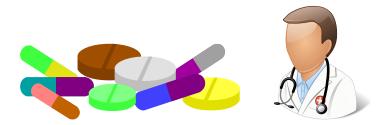
4 Algorithms

Best Arm Identification (BAI) Problem



What is the drug with highest effect?

Best Arm Identification (BAI) Problem



What is the drug with highest effect?

What is the coin with highest expected reward?

Combinatorial Pure Exploration (CPE) Problems

What is the shortest path from A to B?

Combinatorial Pure Exploration (CPE) Problems

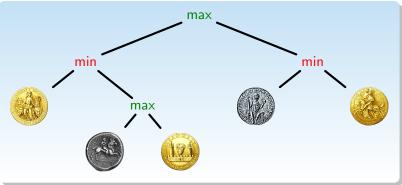
What is the shortest path from A to B?

Maximin Action Identification (MMAI) Problem

What is the optimal move in a given position?

Maximin Action Identification (MMAI) Problem

What is the optimal move in a given position?



Complexity of interactive learning.

Question

Complexity of interactive learning.

- Medical testing [Villar et al., 2015]
- Online advertising and website optimisation [Zhou et al., 2014]
- Monte Carlo planning [Grill et al., 2016], and
- Game-playing AI [Silver et al., 2016]

Pure Exploration

Query: Which is ...

- the most effective drug dose?
- the most appealing website layout?
- the safest next robot action?

Pure Exploration

Query: Which is ...

- the most effective drug dose?
- the most appealing website layout?
- the safest next robot action?

Method

• statistical experiments in physical or simulated environment, interactively and adaptively.

Pure Exploration

Query: Which is ...

- the most effective drug dose?
- the most appealing website layout?
- the safest next robot action?

Method

• statistical experiments in physical or simulated environment, interactively and adaptively.

Main scientific questions:

- sample complexity of interactive learning
 # experiments as function of query structure and environment
- Design of efficient pure exploration systems

Outline

3 Sample Complexity Lower Bound

4 Algorithms

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K).$

The **best** arm is

 $i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K).$

The **best** arm is

 $i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_t \in [K]$. See $X_t \sim \mu_{I_t}$.
- Recommendation rule $\hat{l} \in [K]$.

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_K).$

The **best** arm is

 $i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_t \in [K]$. See $X_t \sim \mu_{I_t}$.
- Recommendation rule $\hat{l} \in [K]$.

Realisation of interaction: $(I_1, X_1), \ldots, (I_{\tau}, X_{\tau}), \hat{I}$.

Environment (Multi-armed bandit model)

K distributions parameterised by their means $\boldsymbol{\mu} = (\mu_1, \ldots, \mu_K).$

The **best** arm is

 $i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_t \in [K]$. See $X_t \sim \mu_{I_t}$.
- Recommendation rule $\hat{l} \in [K]$.

Realisation of interaction: $(I_1, X_1), \ldots, (I_{\tau}, X_{\tau}), \hat{I}$.

Two objectives: sample efficiency τ and correctness $\hat{l} = i^*$.

Objective

On bandit μ , strategy $(au, (I_t)_t, \hat{I})$ has

- error probability $\mathbb{P}_{\boldsymbol{\mu}} (\hat{l} \neq i^*(\boldsymbol{\mu}))$, and
- sample complexity $\mathbb{E}_{\mu}[\tau]$.

Idea: constrain one, optimise the other.

Objective

On bandit μ , strategy $(au, (I_t)_t, \hat{I})$ has

- error probability $\mathbb{P}_{\boldsymbol{\mu}} (\hat{l} \neq i^*(\boldsymbol{\mu}))$, and
- sample complexity $\mathbb{E}_{\mu}[\tau]$.

Idea: constrain one, optimise the other.

Definition

Fix small confidence $\delta \in (0,1)$. A strategy is δ -correct if

 $\mathbb{P}_{oldsymbol{\mu}}ig(\hat{l}
eq i^*(oldsymbol{\mu})ig) \ \leq \ \delta$ for every bandit model $oldsymbol{\mu}.$

Objective

On bandit μ , strategy $(au, (I_t)_t, \hat{I})$ has

- error probability $\mathbb{P}_{\boldsymbol{\mu}} (\hat{l} \neq i^*(\boldsymbol{\mu}))$, and
- sample complexity $\mathbb{E}_{\mu}[\tau]$.

Idea: constrain one, optimise the other.

Definition

Fix small confidence $\delta \in (0,1)$. A strategy is δ -correct if

 $\mathbb{P}_{oldsymbol{\mu}}ig(\hat{l}
eq i^*(oldsymbol{\mu})ig) \ \leq \ \delta$ for every bandit model $oldsymbol{\mu}.$

Goal: minimise $\mathbb{E}_{\mu}[\tau]$ over all δ -correct strategies.

Families of approaches to BAI

- **Upper and Lower confidence bounds** [Bubeck et al., 2011, Kalyanakrishnan et al., 2012, Gabillon et al., 2012, Kaufmann and Kalyanakrishnan, 2013, Jamieson et al., 2014],
- Racing or Successive Rejects/Eliminations [Maron and Moore, 1997, Even-Dar et al., 2006, Audibert et al., 2010, Kaufmann and Kalyanakrishnan, 2013, Karnin et al., 2013],
- Thompson Sampling (partly Bayesian) [Russo, 2016]
- Track-and-Stop [Garivier and Kaufmann, 2016].

Outline

3 Sample Complexity Lower Bound

4 Algorithms

5 Outlook

Sample Complexity Lower bound

Define the alternatives to μ by $Alt(\mu) = \{\lambda | i^*(\lambda) \neq i^*(\mu)\}.$

Sample Complexity Lower bound

Define the **alternatives** to μ by $Alt(\mu) = \{\lambda | i^*(\lambda) \neq i^*(\mu)\}.$

Theorem (Garivier and Kaufmann 2016)

Fix a δ -correct strategy. Then for every bandit model μ

$$\mathbb{E}_{oldsymbol{\mu}}[au] \; \geq \; \mathcal{T}^*(oldsymbol{\mu}) \ln rac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by

$$\frac{1}{T^*(\boldsymbol{\mu})} = \max_{\boldsymbol{w} \in \triangle_K} \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^K w_i \, \mathsf{KL}(\mu_i \| \lambda_i).$$

Sample Complexity Lower bound

Define the **alternatives** to μ by $Alt(\mu) = \{\lambda | i^*(\lambda) \neq i^*(\mu)\}.$

Theorem (Garivier and Kaufmann 2016)

Fix a δ -correct strategy. Then for every bandit model μ

$$\mathbb{E}_{oldsymbol{\mu}}[au] \; \geq \; \mathcal{T}^*(oldsymbol{\mu}) \ln rac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by

$$\frac{1}{\mathcal{T}^*(\boldsymbol{\mu})} = \max_{\boldsymbol{w} \in \Delta_K} \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^K w_i \, \mathsf{KL}(\mu_i \| \lambda_i).$$

Intuition (going back to Lai and Robbins [1985]): if observations are likely under both μ and λ , yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.

Example

$$K = 5$$
 arms, $\mu = (0, 0.1, 0.2, 0.3, 0.4)$.

Bernoulli

 $T^*(\mu) = 200.4$ $w^*(\mu) = (0.45, 0.46, 0.06, 0.02, 0.01)$

Gaussian ($\sigma^2 = 1/4$) $T^*(\mu) = 223.4$ $w^*(\mu) = (0.45, 0.44, 0.06, 0.03, 0.01)$ At $\delta = 0.05$, the time gets multiplied by $\ln \frac{1}{\delta} = 3.0$.

Strategy and model μ induce distribution on $\Omega = \{(I_t, X_t)_{t \leq \tau}, \hat{I}\}$

Strategy and model μ induce distribution on $\Omega = \{(I_t, X_t)_{t \leq \tau}, \hat{I}\}$

• By KL-contraction on $\mathcal{E} = \{\hat{l} \neq i^*(\mu)\}$ and δ -correctness, $\lambda \in Alt(\mu)$

 $\mathsf{KL}\left(\mu(\Omega)\|\boldsymbol{\lambda}(\Omega)\right) \ \geq \ \mathsf{KL}\left(\mu(\mathcal{E})\|\boldsymbol{\lambda}(\mathcal{E})\right) \ \geq \ \mathsf{KL}\left(\delta\|1-\delta\right) \ \rightarrow \ \mathsf{ln}\,\frac{1}{\delta}$

Strategy and model μ induce distribution on $\Omega = \{(I_t, X_t)_{t \leq \tau}, \hat{I}\}$

• By KL-contraction on $\mathcal{E} = \{\hat{l} \neq i^*(\mu)\}$ and δ -correctness, $\lambda \in Alt(\mu)$

 $\mathsf{KL}\left(\boldsymbol{\mu}(\Omega) \| \boldsymbol{\lambda}(\Omega)\right) \ \geq \ \mathsf{KL}\left(\boldsymbol{\mu}(\mathcal{E}) \| \boldsymbol{\lambda}(\mathcal{E})\right) \ \geq \ \mathsf{KL}\left(\delta \| 1 - \delta\right) \ \rightarrow \ \mathsf{ln} \, \frac{1}{\delta}$

Samples X_t are independent given I_t $\mathsf{KL}(\mu(\Omega) || \lambda(\Omega)) = \sum_{i=1}^{K} \mathbb{E}_{\mu}[N_i(\tau)] \mathsf{KL}(\mu_i || \lambda_i)$

Strategy and model μ induce distribution on $\Omega = \{(I_t, X_t)_{t \leq \tau}, \hat{I}\}$

• By KL-contraction on $\mathcal{E} = \{\hat{l} \neq i^*(\mu)\}$ and δ -correctness, $\lambda \in Alt(\mu)$

 $\mathsf{KL}\left(\mu(\Omega)\|\boldsymbol{\lambda}(\Omega)\right) \ \geq \ \mathsf{KL}\left(\mu(\mathcal{E})\|\boldsymbol{\lambda}(\mathcal{E})\right) \ \geq \ \mathsf{KL}\left(\delta\|1-\delta\right) \ \rightarrow \ \mathsf{ln}\,\frac{1}{\delta}$

Samples X_t are independent given I_t KL (µ(Ω)||λ(Ω)) = ∑_{i=1}^K E_µ[N_i(τ)] KL(µ_i||λ_i)
Bring out sample complexity E_µ[τ] = ∑_{i=1}^K E_µ[N_i(τ)] ∑_{i=1}^K E_µ[N_i(τ)] KL(µ_i||λ_i) = E_µ[τ] ∑_{i=1}^K E_µ[N_i(τ)] KL(µ_i||λ_i)

Strategy and model μ induce distribution on $\Omega = \{(I_t, X_t)_{t \leq \tau}, \hat{I}\}$

• By KL-contraction on $\mathcal{E} = \{\hat{l} \neq i^*(\mu)\}$ and δ -correctness, $\lambda \in Alt(\mu)$

 $\mathsf{KL}\left(\mu(\Omega)\|\boldsymbol{\lambda}(\Omega)\right) \ \geq \ \mathsf{KL}\left(\mu(\mathcal{E})\|\boldsymbol{\lambda}(\mathcal{E})\right) \ \geq \ \mathsf{KL}\left(\delta\|1-\delta\right) \ \rightarrow \ \mathsf{ln}\,\frac{1}{\delta}$

Samples X_t are independent given I_t $\mathsf{KL}(\mu(\Omega) || \lambda(\Omega)) = \sum_{i=1}^{K} \mathbb{E}_{\mu}[N_i(\tau)] \mathsf{KL}(\mu_i || \lambda_i)$

③ Bring out sample complexity $\mathbb{E}_{\mu}[\tau] = \sum_{i=1}^{K} \mathbb{E}_{\mu}[N_i(\tau)]$

$$\sum_{i=1}^{K} \mathbb{E}_{\boldsymbol{\mu}}[N_i(\tau)] \operatorname{KL}(\mu_i \| \lambda_i) = \mathbb{E}_{\boldsymbol{\mu}}[\tau] \sum_{i=1}^{K} \frac{\mathbb{E}_{\boldsymbol{\mu}}[N_i(\tau)]}{\mathbb{E}_{\boldsymbol{\mu}}[\tau]} \operatorname{KL}(\mu_i \| \lambda_i)$$

• Pick tightest alternative λ and best (oracle) proportions w_i :

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau] \max_{\boldsymbol{w} \in \bigtriangleup_{\boldsymbol{K}}} \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\boldsymbol{K}} w_i \, \mathsf{KL}(\mu_i \| \lambda_i) \geq \ln \frac{1}{\delta}$$

Outline

3 Sample Complexity Lower Bound

4 Algorithms

Algorithms

- Sampling rule *I_t*?
- Stopping rule τ ?
- Recommendation rule *Î*?

$$\hat{I} = \underset{i \in [K]}{\operatorname{argmax}} \hat{\mu}_i(\tau)$$

where $\hat{\mu}(t)$ is **empirical mean**.

Sampling Rule

Look at the lower bound again. Any good algorithm must sample with optimal (**oracle**) proportions

$$m{w}^*(m{\mu}) = rgmax_{m{w}\in riangle_K} \min_{m{\lambda}\in riangle riangle riangle_I} \sum_{i=1}^K w_i \operatorname{\mathsf{KL}}(\mu_i \| \lambda_i)$$

Sampling Rule

Look at the lower bound again. Any good algorithm must sample with optimal (**oracle**) proportions

$$m{w}^*(m{\mu}) = rgmax_{m{w}\in riangle_K} \min_{m{\lambda}\in \mathsf{Alt}(m{\mu})} \sum_{i=1}^K w_i \,\mathsf{KL}(\mu_i \| \lambda_i)$$

Idea: draw $I_t \sim w^*(\hat{\mu}(t)).$

- Ensure $\hat{\mu}(t)
 ightarrow \mu$ hence $N_i(t)/t
 ightarrow w_i^*$ by "forced exploration"
- Draw arm with $N_i(t)/t$ below w_i^* (tracking)
- Computation of w^* (reduction to 1d line search)

Sufficient evidence to stop? Classical hypothesis test [Wald, 1945].

Sufficient evidence to stop? Classical hypothesis test [Wald, 1945]. Generalized Likelihood Ratio Test (GLRT)

$$Z_t = \ln rac{P_{\hat{\mu}(t)}(data)}{\max_{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} P_{\lambda}(data)}$$

Sufficient evidence to stop? Classical hypothesis test [Wald, 1945]. Generalized Likelihood Ratio Test (GLRT)

$$Z_t = \ln rac{P_{\hat{\mu}(t)}(data)}{\max_{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} P_{\lambda}(data)}$$

Turns out, GLRT statistic equals

$$Z_t = \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\hat{\boldsymbol{\mu}}(t))} \sum_{i=1}^{K} N_i(t) \operatorname{KL}(\hat{\mu}_i(t) \| \lambda_i)$$

i.e. lower bound with $\hat{\mu}(t)$ plug-in.

Sufficient evidence to stop? Classical hypothesis test [Wald, 1945]. Generalized Likelihood Ratio Test (GLRT)

$$Z_t = \ln rac{P_{\hat{\mu}(t)}(data)}{\max_{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} P_{\lambda}(data)}$$

Turns out, GLRT statistic equals

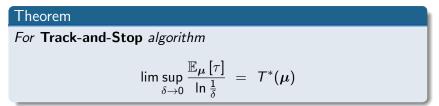
$$Z_t = \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\hat{\boldsymbol{\mu}}(t))} \sum_{i=1}^{K} N_i(t) \operatorname{KL}(\hat{\mu}_i(t) \| \lambda_i)$$

i.e. lower bound with $\hat{\mu}(t)$ plug-in.

Roughly: stop when $Z_t \ge \ln \frac{1}{\delta}$. Make precise with careful universal coding (MDL) argument.

All in all

Final result: lower and upper bound meet.



Very similar optimality result for **Top Two Thompson Sampling** by Russo [2016]. Here $N_i(t)/t \rightarrow w_i^*$ result of posterior sampling.

Outline

3 Sample Complexity Lower Bound

Beyond asymptotic bounds

Okay, so good algorithms have

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \le \ \mathcal{T}^*(oldsymbol{\mu}) \ln rac{1}{\delta} + ext{small}.$$

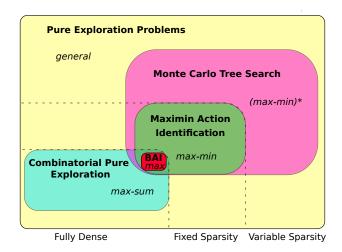
What about lower-order terms? "Moderate confidence" regime!

- Dependence on $\ln \ln \frac{1}{\delta}$.
- Dependence on In K (i.e. Fano).

[Simchowitz et al., 2017, Chen et al., 2017b]

Beyond Best Arm

Practical and fundamental question: solving more complex pure exploration problems.



Combinatorial Pure Exploration

- Best k-set
- Shortest path
- Spanning tree
- . . .

Combinatorial Pure Exploration

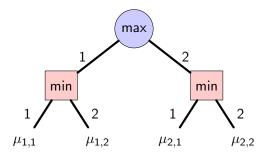
- Best k-set
- Shortest path
- Spanning tree
- . . .

Combinatorial collection \mathcal{F} of subsets of [K].

$$i^* = i^*(\mu) = \operatorname{argmax}_{S \in \mathcal{F}} \sum_{i \in S} \mu_i.$$

Track-and-stop-like algorithms [Chen et al., 2017a]. Can compute oracle weights. Dense.

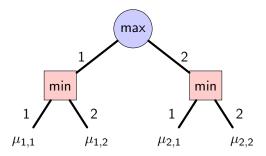
Game Tree Search



Goal: find maximin action

$$i^* := \arg \max_i \min_j \mu_{i,j}$$

Game Tree Search

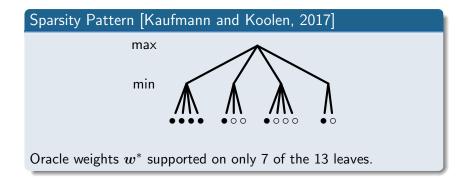


Goal: find maximin action

$$i^* := \arg \max_i \min_j \mu_{i,j}$$

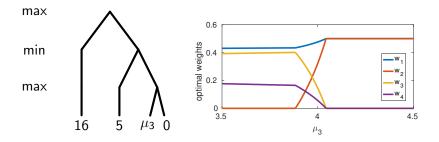
Range of algorithms: Teraoka et al. [2014], Garivier et al. [2016], Kaufmann and Koolen [2017], Huang et al. [2017]

Sparsity in the Lower Bound (depth 2)



Open problem: algorithms incorporating appropriate pruning?

Sparsity in the Lower Bound (depth 3)



Oracle weights $w^* = (w_1, w_2, w_3, w_4)$ as a function of μ_3

Open Problem: Characterisation of sparsity patterns. Computation.

Conclusion

BAI: Invert lower bounds to obtain **algorithms**. Challenge: landscape of all pure exploration problems

