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Best Arm Identification (BAI) Problem

What is the drug with highest effect?

What is the coin with highest expected reward?
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Combinatorial Pure Exploration (CPE) Problems

What is the shortest path from A to B?
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Maximin Action Identification (MMAI) Problem

What is the optimal move in a given position?
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Question

Complexity of interactive learning.

Medical testing [Villar et al., 2015]

Online advertising and website optimisation [Zhou et al., 2014]

Monte Carlo planning [Grill et al., 2016], and

Game-playing AI [Silver et al., 2016]
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Pure Exploration

Query: Which is . . .

the most effective drug dose?

the most appealing website layout?

the safest next robot action?

Method

statistical experiments in physical or simulated environment,
interactively and adaptively.

Main scientific questions:

sample complexity of interactive learning
# experiments as function of query structure and environment

Design of efficient pure exploration systems
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Formal model

Environment (Multi-armed bandit model)

K distributions parameterised by their means µ = (µ1, . . . , µK ).

The best arm is
i∗ = argmax

i∈[K ]
µi

Strategy

Stopping rule τ ∈ N
In round t ≤ τ sampling rule picks It ∈ [K ]. See Xt ∼ µIt .
Recommendation rule Î ∈ [K ].

Realisation of interaction: (I1,X1), . . . , (Iτ ,Xτ ), Î .

Two objectives: sample efficiency τ and correctness Î = i∗.
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Objective

On bandit µ, strategy (τ, (It)t , Î ) has

error probability Pµ
(
Î 6= i∗(µ)

)
, and

sample complexity Eµ[τ ].

Idea: constrain one, optimise the other.

Definition

Fix small confidence δ ∈ (0, 1). A strategy is δ-correct if

Pµ
(
Î 6= i∗(µ)

)
≤ δ for every bandit model µ.

Goal: minimise Eµ[τ ] over all δ-correct strategies.
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Families of approaches to BAI

Upper and Lower confidence bounds [Bubeck et al., 2011,
Kalyanakrishnan et al., 2012, Gabillon et al., 2012, Kaufmann
and Kalyanakrishnan, 2013, Jamieson et al., 2014],

Racing or Successive Rejects/Eliminations [Maron and
Moore, 1997, Even-Dar et al., 2006, Audibert et al., 2010,
Kaufmann and Kalyanakrishnan, 2013, Karnin et al., 2013],

Thompson Sampling (partly Bayesian) [Russo, 2016]

Track-and-Stop [Garivier and Kaufmann, 2016].
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Sample Complexity Lower bound

Define the alternatives to µ by Alt(µ) = {λ|i∗(λ) 6= i∗(µ)}.

Theorem (Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ

Eµ[τ ] ≥ T ∗(µ) ln
1

δ

where the characteristic time T ∗(µ) is given by

1

T ∗(µ)
= max

w∈4K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi‖λi ).

Intuition (going back to Lai and Robbins [1985]): if observations
are likely under both µ and λ, yet i∗(µ) 6= i∗(λ), then learner
cannot stop and be correct in both.
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Example

K = 5 arms, µ = (0, 0.1, 0.2, 0.3, 0.4).

Bernoulli

T ∗(µ) = 200.4 w∗(µ) = (0.45, 0.46, 0.06, 0.02, 0.01)

Gaussian (σ2 = 1/4)

T ∗(µ) = 223.4 w∗(µ) = (0.45, 0.44, 0.06, 0.03, 0.01)

At δ = 0.05, the time gets multiplied by ln 1
δ = 3.0.



Change of Measure Argument

Strategy and model µ induce distribution on Ω = {(It ,Xt)t≤τ , Î}

1 By KL-contraction on E = {Î 6= i∗(µ)} and δ-correctness,
λ ∈ Alt(µ)

KL (µ(Ω)‖λ(Ω)) ≥ KL (µ(E)‖λ(E)) ≥ KL (δ‖1− δ) → ln
1

δ
2 Samples Xt are independent given It

KL (µ(Ω)‖λ(Ω)) =
∑K

i=1 Eµ[Ni (τ)] KL(µi‖λi )
3 Bring out sample complexity Eµ[τ ] =

∑K
i=1 Eµ[Ni (τ)]

K∑
i=1

Eµ[Ni (τ)] KL(µi‖λi ) = Eµ[τ ]
K∑
i=1

Eµ[Ni (τ)]

Eµ[τ ]
KL(µi‖λi )

4 Pick tightest alternative λ and best (oracle) proportions wi :

Eµ[τ ] max
w∈4K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi‖λi ) ≥ ln
1

δ
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Algorithms

Sampling rule It?

Stopping rule τ?

Recommendation rule Î?

Î = argmax
i∈[K ]

µ̂i (τ)

where µ̂(t) is empirical mean.



Sampling Rule

Look at the lower bound again. Any good algorithm must sample
with optimal (oracle) proportions

w∗(µ) = argmax
w∈4K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi‖λi )

Idea: draw It ∼ w∗(µ̂(t)).

Ensure µ̂(t)→ µ hence Ni (t)/t → w∗i by “forced
exploration”

Draw arm with Ni (t)/t below w∗i (tracking)

Computation of w∗ (reduction to 1d line search)
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Stopping Rule

Sufficient evidence to stop? Classical hypothesis test [Wald, 1945].

Generalized Likelihood Ratio Test (GLRT)

Zt = ln
Pµ̂(t)(data)

maxλ∈Alt(µ̂(t)) Pλ(data)

Turns out, GLRT statistic equals

Zt = min
λ∈Alt(µ̂(t))

K∑
i=1

Ni (t) KL(µ̂i (t)‖λi )

i.e. lower bound with µ̂(t) plug-in.

Roughly: stop when Zt ≥ ln 1
δ . Make precise with careful universal

coding (MDL) argument.
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All in all

Final result: lower and upper bound meet.

Theorem

For Track-and-Stop algorithm

lim sup
δ→0

Eµ [τ ]

ln 1
δ

= T ∗(µ)

Very similar optimality result for Top Two Thompson Sampling
by Russo [2016]. Here Ni (t)/t → w∗i result of posterior sampling.
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Beyond asymptotic bounds

Okay, so good algorithms have

Eµ[τ ] ≤ T ∗(µ) ln
1

δ
+ small.

What about lower-order terms? “Moderate confidence” regime!

Dependence on ln ln 1
δ .

Dependence on lnK (i.e. Fano).

[Simchowitz et al., 2017, Chen et al., 2017b]



Beyond Best Arm

Practical and fundamental question: solving more complex pure
exploration problems.

max-sum

BAI
max

Maximin Action 

Identification

max-min

Monte Carlo Tree Search

(max-min)*

Pure Exploration Problems

Fully Dense Fixed Sparsity Variable Sparsity

Combinatorial Pure
 Exploration

:

general



Combinatorial Pure Exploration

Best k-set

Shortest path

Spanning tree

. . .

Combinatorial collection F of subsets of [K ].

i∗ = i∗(µ) = argmax
S∈F

∑
i∈S

µi .

Track-and-stop-like algorithms [Chen et al., 2017a]. Can compute
oracle weights. Dense.
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Game Tree Search

max

min

µ1,1

1

µ1,2

2

1

min

µ2,1

1

µ2,2

2

2

Goal: find maximin action

i∗ := arg max
i

min
j
µi ,j

Range of algorithms: Teraoka et al. [2014], Garivier et al. [2016],
Kaufmann and Koolen [2017], Huang et al. [2017]
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Sparsity in the Lower Bound (depth 2)

Sparsity Pattern [Kaufmann and Koolen, 2017]

max

min

•••• •◦◦ •◦◦◦ •◦

Oracle weights w∗ supported on only 7 of the 13 leaves.

Open problem: algorithms incorporating appropriate pruning?



Sparsity in the Lower Bound (depth 3)

max

min

max
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Oracle weights w∗ = (w1,w2,w3,w4) as a function of µ3

Open Problem: Characterisation of sparsity patterns.
Computation.



Conclusion

BAI: Invert lower bounds to obtain algorithms.
Challenge: landscape of all pure exploration problems

max-sum

BAI
max

Maximin Action 

Identification

max-min

Monte Carlo Tree Search

(max-min)*

Pure Exploration Problems

Fully Dense Fixed Sparsity Variable Sparsity

Combinatorial Pure
 Exploration

:

general
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