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Conclusion

A simple factor (1 + nr¢) stretches surprisingly far.
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Coin Betting

Ko=1.

Fort=1,2,...
@ Skeptic picks M; € R
o Reality picks r; € [—1,1]
o Kt =K1+ Mirs

Pick an event E.
Skeptic wins if

Q@ K:>0

Q@ nn---€Eor Ky — 0.
Say: Skeptic can force E.
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Forcing The Law of Large Numbers

Fix 7 € [0,1/2]. Suppose Skeptic plays M; = K;_17).
Then

Kr = Kroi+Kr-urr = Kr—a(l+0rr) = IU1+UG

Now say C > k7. Then, using In(1+ x) > x — x2,

T T
InC > Z In(1+nre) > ant — Tn?
t=1

Hence

InC _ 1 1
—_— > = re— and so 7 > limsup —= re
T 3

T—oo
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Forcing The Law of Large Numbers

Finally, let Skeptic allocate a fraction ~; of his initial g =1 to n;
Then

00 T
Z’Yi H(l +1;ire)

i=1  t=1
Now suppose C > K. Then for each i:

-
InC > Invyi+ Z In(1+ 7n;re)
t=1
So for each i
lim sup— e < m;
T—o0 Z ‘ '
and hence

IN
o

limsup —= Z re

T—oo



What else

Skeptic can force many laws of probability. For example the LIL
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What else

Skeptic can force many laws of probability. For example the LIL

>
H =11t
limsup ——=———

Tooo V2T InIn T

Small deviations?
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Experts

Let's play the experts game.

@ Learner picks w; € Ak
e Reality picks £; € [0,1]¥

@ Learner incurs (wy, £¢)

Goal: make sure regret compared to any expert k is sublinear.

lim sup— < where rk = (wy, £;) — (¥
T—o0 Z ! ' t> ‘
Key idea: Defensive Forecasting

© Fix a strategy for Skeptic that forces this goal.

@ Play w; so that Skeptic does not get rich
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Split capital o = 1 over experts k with weights 74 and 7; with ~;.

Kr =

T
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i
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How to play? Make sure 1 does not grow big.
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> mevi
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Stategy

Stragegy for Skeptic:
Split capital o = 1 over experts k with weights 74 and 7; with ~;.

-
Kr = ZWWiH(l + 11t
k,i t=1
How to play? Make sure 1 does not grow big.
T
Kron—Kr = > meyi [JQ+nirf)nirs
ki t=1
T
= Zﬂﬂi H(l + i) (<wT+1>£T+1> - £kT+1>
k,i t=1
=0
when we pick
T k
TR 141 .
Wf,<_+1 _ ZI ki Ht:1( it )nl (IPI’Od)

= :
Zj,i 7 [Le—q (14 765
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Squint

-
wh, = 2™k [ =y (1 + ’fliftk.)”li (iProd)
Zj,i Y HtT:1(1 + 0 )n;

Needs work:

@ Rates (how sublinear are the regrets?)

@ Computation
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Rates

By design,
Zwk'y, H (1 +n;r)
t=1
So for each i and k
T T
—Inmg —Iny; > Zln(l—i—nirf) > U,Zrt — s Z rk)?
t=1 t=1

That is, abbreviating v/ = (r¥)?,

T T
—Inmg — In~y;
k . k k Vi
er < miln <7),—th + )
t=1 t=1

Uh

Theorem (Koolen and van Erven [2015])

RE < O <\/v¢ (—In 7k + Inln v;))
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Computation

T

Kr = Y mevi [ +mr)
i

t=1

We are using In(1+ r) > r — r? in the analysis. Put it in
algorithm?
Indeed, we can start from supermartingale

T

k_ 2 k n-Rk—

ICT > CI)T = E 7'rk'Y/'l_[€'77"rt e = E 7Tk’Yi"‘—"r]'RT K
ki t=1 ki
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Computation

T

Kr = Y mevi [ +mr)
i

t=1

We are using In(1+ r) > r — r? in the analysis. Put it in
algorithm?
Indeed, we can start from supermartingale

;
Kr 2 &7 = Y ey [[ e 7 = 3w Re Ve
ki t=1 i

One choice of weights to keep this small:

k _2\/k
> imeyieiRrem Vi,

Wry1 = SV
> mivie iRV,

(Squint)



Computation, ctd

k. 2v\/k
K S meyie iRV,

Wry1r = i _2vi
> i€ Rr=mi Ve,

(Squint)



Computation, ctd

-ka’gvk,
K i mEyielitTT Ty, ,
Wry = A 2y (Squint)
> i€t

Maybe a continuous prior on 7 could help? How to make
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Computation, ctd

-R"f'?V",
k D mkyiel T Ty, .
Wiy = . : (Squint)
Z T -e"]iRJTfn,2 V%'fr .
j,i T 1i

Maybe a continuous prior on 7 could help? How to make

1/2 Rk 2vk
/ Y (m)e” T T dry
0

fast?

e Conjugate (1) e=21=57" = Truncated Guassian mean.
1

e Improper (7)) o . = Gaussian CDF.



Computation, ctd

Rk72vk
wk o — Yo myie it T Ty,
T+1 — i .2\

iR —m2 VY
> i€t

Maybe a continuous prior on 7 could help? How to make

(Squint)

1/2 Rk 2vk
/ y(n)e" T Ty dy
0

fast?

e Conjugate (1) e=21=57" = Truncated Guassian mean.

@ Improper (1) o %} = Gaussian CDF.

Theorem (Koolen and van Erven [2015])

RE < 0 (\/v¢(—|nwk+|n|n T))




Squint Conclusion

Computation:
e O(1) time per round (like Hedge, Adapt-ML-Prod, ...)
o Library: https://bitbucket.org/wmkoolen/squint

Regret:

o Adaptive 1/ VE(In K +InIn T) bound.
@ Implies L* bound, T bound.

o Constant regret in stochastic gap case.


https://bitbucket.org/wmkoolen/squint
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Online Convex Optimisation

Let's play the OCO game.
Fort=1,2,...

@ Learner plays w;: € U (convex, bounded).
@ Reality picks f; : U/ — R (convex, bounded gradient)

@ Learner incurs f(w;) and observes Vfi(w;)

Goal: small regret w.r.t. all u € U

;
RY = Y (fi(we) — fi(u))
t=1

Step 1: let's play a harder game with linearised loss

f(we) = fi(u) < (we —u, Vhi(we)) = r
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Goal: keep regret small for all u € U = prior ™ on u.
1/2 T
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0 U t=1
Kan we keep this small?
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iProd/Squint for OCO

Goal: keep regret small for all u € U = prior ™ on u.

1/2 T
Kr - /0 NG /u ) [+ vty sudr

Kan we keep this small?

K11 —Kr
1/2 T
_ / A () / () [T+ 07 (w1 — w, V1 (wr1)) dudy
0 u t=1
Need

1/2 T

|90 [ @ [T+ (ori - w dudy = 0
t=1

which mandates

Jo24(0) fy m(u) T (1 + nri)nu dudy

f1/2 (1) Jy m( Ht 1L+ nr)ndudy

WT41 =



OCO iProd:

B f01/2 v(n) qu(U)HZ (T +nr)nududny

f/ (1) Jp m( Ht 1T+ nr)ndudy

Work needed:
@ Picking priors
o Computation

o Rates



Prod bound to the rescue

We might also use
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Prod bound to the rescue

We might also use

fol/z v(n) fz,{ 7T("«’f)e”"??fh_"2 V¥ nu du dn
T+1 = " -
f01/2 ’Y(U) fu ﬂ_(u)enRT—nZ V# n du d77

3
I
]~

(wy — u, Vi (we))

t=1

=
I
]~

(wy — u, Vft(wt)>2

t=1

linear/quadratic in w. = suggests 7(u) multivariate Normal.

But then w; may end up outside /. And r* not bounded.



MetaGrad

Let's do it anyway. Turns out it works.

-

w — Zi'7i77i'wi
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i 4 e T
where
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MetaGrad

Let's do it anyway. Turns out it works.

-

> Vinjw;
w = ————
> Vini
e
Vi 4= yie
where
r = (w; — w) "V,
Tilted Exponential Weights

N

Y (Z7 4 22V VAT
w; + [y ('w,- = Uizint (1 + 2niri))

= Online Newton Step

The regret of MetaGrad is bounded by

Rr = O (min {\/? VY dln T})
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Consequences

What's new with /V+dIn T?

For a-exp-concave or a-strongly convex losses, MetaGrad
ensures

Rr = O(dInT)

without knowing c.

Corollary (Koolen, Griinwald, and van Erven [2016])

For any (-Bernstein P, MetaGrad keeps the expected regret below
1 _1-p
ER: < O ((dln T)75 T2—ﬁ)

without knowing (3.
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