The Design of Online Learning Algorithms

Wouter M. Koolen

Online Learning Workshop Paris, Friday 20th October, 2017

Conclusion

A simple factor $(1 + \eta r_t)$ stretches surprisingly far.

Outline

- 1 Coin Betting
- 2 Defensive Forecasting
- Squint
- MetaGrad

Coin Betting

```
K_0 = 1.
For t = 1, 2, ...
```

- Skeptic picks $M_t \in \mathbb{R}$
- ullet Reality picks $r_t \in [-1,1]$
- $\mathcal{K}_t = \mathcal{K}_{t-1} + M_t r_t$

Coin Betting

 $K_0 = 1$. For t = 1, 2, ...

- Skeptic picks $M_t \in \mathbb{R}$
- ullet Reality picks $r_t \in [-1,1]$
- $\bullet \ \mathcal{K}_t = \mathcal{K}_{t-1} + M_t r_t$

Pick an event E.

Skeptic wins if

- $0 \mathcal{K}_t \geq 0$
- $r_1 r_2 \cdots \in E \text{ or } \mathcal{K}_t \to \infty.$

Say: Skeptic can **force** *E*.

Fix $\eta \in [0,1/2]$. Suppose Skeptic plays $M_t = \mathcal{K}_{t-1} \eta$. Then

$$\mathcal{K}_{T} = \mathcal{K}_{T-1} + \mathcal{K}_{T-1} \eta r_{T} = \mathcal{K}_{T-1} (1 + \eta r_{T}) = \prod_{t=1}^{r} (1 + \eta r_{t})$$

Fix $\eta \in [0, 1/2]$. Suppose Skeptic plays $M_t = \mathcal{K}_{t-1} \eta$. Then

$$\mathcal{K}_{T} = \mathcal{K}_{T-1} + \mathcal{K}_{T-1} \eta r_{T} = \mathcal{K}_{T-1} (1 + \eta r_{T}) = \prod_{t=1}^{r} (1 + \eta r_{t})$$

Now say
$$C \ge \mathcal{K}_{\mathcal{T}}$$
. Then, using $\ln(1+x) \ge x - x^2$,

$$\ln C \geq \sum_{t=1}^{T} \ln(1 + \frac{\eta}{r_t}) \geq \sum_{t=1}^{T} \frac{\eta}{r_t} - T\eta^2$$

Fix $\eta \in [0,1/2]$. Suppose Skeptic plays $M_t = \mathcal{K}_{t-1}\eta$. Then

$$\mathcal{K}_{T} = \mathcal{K}_{T-1} + \mathcal{K}_{T-1} \frac{\eta}{\eta} r_{T} = \mathcal{K}_{T-1} (1 + \frac{\eta}{\eta} r_{T}) = \prod_{t=1}^{r} (1 + \frac{\eta}{\eta} r_{t})$$

Now say $C \ge \mathcal{K}_T$. Then, using $\ln(1+x) \ge x - x^2$,

$$\ln C \geq \sum_{t=1}^{T} \ln(1+\eta r_t) \geq \sum_{t=1}^{T} \eta r_t - T\eta^2$$

Hence

$$\frac{\ln C}{T_{\eta}} \geq \frac{1}{T} \sum_{t=1}^{T} r_t - \frac{\eta}{\eta} \quad \text{and so} \quad \frac{\eta}{T} \geq \limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} r_t$$

Finally, let Skeptic allocate a fraction γ_i of his initial $\mathcal{K}_0=1$ to η_i . Then

$$\mathcal{K}_{T} = \sum_{i=1}^{\infty} \gamma_{i} \prod_{t=1}^{T} (1 + \eta_{i} r_{t})$$

Finally, let Skeptic allocate a fraction γ_i of his initial $\mathcal{K}_0=1$ to η_i . Then

$$\mathcal{K}_{T} = \sum_{i=1}^{\infty} \gamma_{i} \prod_{t=1}^{T} (1 + \eta_{i} r_{t})$$

Now suppose $C \ge \mathcal{K}_T$. Then for each i:

$$\ln C \geq \ln \gamma_i + \sum_{t=1}^T \ln(1 + \eta_i r_t)$$

Finally, let Skeptic allocate a fraction γ_i of his initial $\mathcal{K}_0=1$ to η_i . Then

$$\mathcal{K}_{T} = \sum_{i=1}^{\infty} \gamma_{i} \prod_{t=1}^{T} (1 + \eta_{i} r_{t})$$

Now suppose $C \geq \mathcal{K}_T$. Then for each i:

$$\ln C \geq \ln \gamma_i + \sum_{t=1}^T \ln(1 + \frac{\eta_i}{\eta_i} r_t)$$

So for each i

$$\limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} r_t \leq \eta_i$$

and hence

$$\limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} r_t \leq 0$$

What else

Skeptic can force many laws of probability. For example the LIL

$$\limsup_{T \to \infty} \frac{\sum_{t=1}^{T} r_t}{\sqrt{2T \ln \ln T}} \leq 1$$

What else

Skeptic can force many laws of probability. For example the LIL

$$\limsup_{T \to \infty} \frac{\sum_{t=1}^T r_t}{\sqrt{2T \ln \ln T}} \ \le \ 1$$

Small deviations?

Outline

- Coin Betting
- 2 Defensive Forecasting
- Squint
- MetaGrad

Experts

Let's play the experts game.

- ullet Learner picks $oldsymbol{w}_t \in riangle_{oldsymbol{\mathcal{K}}}$
- ullet Reality picks $\ell_t \in [0,1]^K$
- ullet Learner incurs $\langle oldsymbol{w}_t, oldsymbol{\ell}_t
 angle$

Experts

Let's play the experts game.

- Learner picks $w_t \in \triangle_K$
- Reality picks $\ell_t \in [0,1]^K$
- ullet Learner incurs $\langle oldsymbol{w}_t, oldsymbol{\ell}_t
 angle$

Goal: make sure regret compared to any expert k is **sublinear**.

$$\limsup_{T o \infty} rac{1}{T} \sum_{t=1}^{I} r_t^k \leq 0$$
 where $r_t^k = \langle \boldsymbol{w}_t, \ell_t \rangle - \ell_t^k$

Experts

Let's play the experts game.

- ullet Learner picks $oldsymbol{w}_t \in riangle_{oldsymbol{\mathcal{K}}}$
- Reality picks $\ell_t \in [0,1]^K$
- ullet Learner incurs $\langle oldsymbol{w}_t, oldsymbol{\ell}_t
 angle$

Goal: make sure regret compared to any expert k is **sublinear**.

$$\limsup_{T o \infty} rac{1}{T} \sum_{t=1}^T r_t^k \leq 0$$
 where $r_t^k = \langle m{w}_t, m{\ell}_t
angle - \ell_t^k$

Key idea: **Defensive Forecasting**

- Fix a strategy for Skeptic that forces this goal.
- ② Play w_t so that Skeptic does not get rich

Stategy

Stragegy for Skeptic:

Split capital $\mathcal{K}_0=1$ over experts k with weights π_k and η_i with γ_i .

$$\mathcal{K}_T = \sum_{k,i} \pi_k \gamma_i \prod_{t=1}^T (1 + \frac{\eta_i}{r_t^k})$$

Stategy

Stragegy for Skeptic:

Split capital $\mathcal{K}_0=1$ over experts k with weights π_k and η_i with γ_i .

$$\mathcal{K}_{T} = \sum_{k,i} \pi_{k} \gamma_{i} \prod_{t=1}^{r} (1 + \eta_{i} r_{t}^{k})$$

How to play? Make sure $\mathcal{K}_{\mathcal{T}}$ does not grow big.

$$\mathcal{K}_{T+1} - \mathcal{K}_{T} = \sum_{k,i} \pi_{k} \gamma_{i} \prod_{t=1}^{r} (1 + \eta_{i} r_{t}^{k}) \eta_{i} r_{T+1}^{k}$$

$$= \sum_{k,i} \pi_{k} \gamma_{i} \prod_{t=1}^{T} (1 + \eta_{i} r_{t}^{k}) \eta_{i} \left(\langle \boldsymbol{w}_{T+1}, \boldsymbol{\ell}_{T+1} \rangle - \ell_{T+1}^{k} \right)$$

$$= 0$$

Stategy

Stragegy for Skeptic:

Split capital $\mathcal{K}_0=1$ over experts k with weights π_k and η_i with γ_i .

$$\mathcal{K}_T = \sum_{k,i} \pi_k \gamma_i \prod_{t=1}^{i} (1 + \eta_i r_t^k)$$

How to play? Make sure $\mathcal{K}_{\mathcal{T}}$ does not grow big.

$$\mathcal{K}_{T+1} - \mathcal{K}_{T} = \sum_{k,i} \pi_{k} \gamma_{i} \prod_{t=1}^{r} (1 + \eta_{i} r_{t}^{k}) \eta_{i} r_{T+1}^{k}$$

$$= \sum_{k,i} \pi_{k} \gamma_{i} \prod_{t=1}^{T} (1 + \eta_{i} r_{t}^{k}) \eta_{i} \left(\langle w_{T+1}, \ell_{T+1} \rangle - \ell_{T+1}^{k} \right)$$

$$= 0$$

when we pick

$$w_{T+1}^{k} = \frac{\sum_{i} \pi_{k} \gamma_{i} \prod_{t=1}^{T} (1 + \eta_{i} r_{t}^{k}) \eta_{i}}{\sum_{j,i} \pi_{j} \gamma_{i} \prod_{t=1}^{T} (1 + \eta_{i} r_{t}^{j}) \eta_{i}}$$
 (iProd)

Outline

- Coin Betting
- 2 Defensive Forecasting
- Squint
- MetaGrac

Squint

$$w_{T+1}^{k} = \frac{\sum_{i} \pi_{k} \gamma_{i} \prod_{t=1}^{T} (1 + \eta_{i} r_{t}^{k}) \eta_{i}}{\sum_{j,i} \pi_{j} \gamma_{i} \prod_{t=1}^{T} (1 + \eta_{i} r_{t}^{j}) \eta_{i}}$$
 (iProd)

Needs work:

- Rates (how sublinear are the regrets?)
- Computation

By design,

$$1 = \mathcal{K}_T = \sum_{k,i} \pi_k \gamma_i \prod_{t=1}^T (1 + \frac{\eta_i}{r_t^k})$$

By design,

$$1 = \mathcal{K}_{\mathcal{T}} = \sum_{k,i} \pi_k \gamma_i \prod_{t=1}^{\mathcal{T}} (1 + \frac{\eta_i}{r_t^k})$$

So for each i and k,

$$-\ln \pi_k - \ln \gamma_i \geq \sum_{t=1}^T \ln(1 + \frac{\eta_i}{r_t^k}) \geq \frac{\eta_i}{t} \sum_{t=1}^T r_t^k - \frac{\eta_i^2}{t} \sum_{t=1}^T (r_t^k)^2$$

By design,

$$1 = \mathcal{K}_{\mathcal{T}} = \sum_{k,i} \pi_k \gamma_i \prod_{t=1}^{\mathcal{T}} (1 + \eta_i r_t^k)$$

So for each i and k,

$$-\ln \pi_k - \ln \gamma_i \ \geq \ \sum_{t=1}^T \ln (1 + \frac{\eta_i}{r_t^k}) \ \geq \ \frac{\eta_i}{t} \sum_{t=1}^T r_t^k - \frac{\eta_i^2}{t} \sum_{t=1}^T (r_t^k)^2$$

That is, abbreviating $v_t^k = (r_t^k)^2$,

$$\sum_{t=1}^{T} r_t^k \leq \min_{i} \left(\frac{\eta_i}{\eta_i} \sum_{t=1}^{T} v_t^k + \frac{-\ln \pi_k - \ln \gamma_i}{\eta_i} \right)$$

By design,

$$1 = \mathcal{K}_{\mathcal{T}} = \sum_{k,i} \pi_k \gamma_i \prod_{t=1}^{\mathcal{T}} (1 + \frac{\eta_i}{r_t^k})$$

So for each i and k,

$$-\ln \pi_k - \ln \gamma_i \geq \sum_{t=1}^T \ln (1 + \frac{\eta_i}{r_t^k}) \geq \frac{\eta_i}{t} \sum_{t=1}^T r_t^k - \frac{\eta_i^2}{t} \sum_{t=1}^T (r_t^k)^2$$

That is, abbreviating $v_t^k = (r_t^k)^2$,

$$\sum_{t=1}^{T} r_t^k \leq \min_{i} \left(\frac{\eta_i}{\sum_{t=1}^{T} v_t^k} + \frac{-\ln \pi_k - \ln \gamma_i}{\eta_i} \right)$$

Theorem (Koolen and van Erven [2015])

$$R_T^k \leq O\left(\sqrt{V_T^k\left(-\ln \pi_k + \ln \ln V_T^k\right)}\right)$$

Computation

$$\mathcal{K}_{T} = \sum_{k,i} \pi_{k} \gamma_{i} \prod_{t=1}^{T} (1 + \frac{\eta_{i}}{r_{t}^{k}})$$

We are using $ln(1+r) \ge r - r^2$ in the **analysis**. Put it in **algorithm**?

Computation

$$\mathcal{K}_{\mathcal{T}} \ = \ \sum_{k,i} \pi_k \gamma_i \prod_{t=1}^{\mathcal{T}} (1 + \frac{\eta_i}{r_t^k})$$

We are using $ln(1+r) \ge r - r^2$ in the **analysis**. Put it in **algorithm**?

Indeed, we can start from supermartingale

$$\mathcal{K}_{T} \geq \Phi_{T} = \sum_{k,i} \pi_{k} \gamma_{i} \prod_{t=1}^{I} e^{\frac{\eta_{i}}{r_{t}^{k}} - \frac{\eta_{i}^{2}}{r_{t}^{k}}} = \sum_{k,i} \pi_{k} \gamma_{i} e^{\frac{\eta_{i}}{r_{t}^{k}} - \frac{\eta_{i}^{2}}{r_{i}^{k}}} V_{T}^{k}$$

Computation

$$\mathcal{K}_{T} = \sum_{k,i} \pi_{k} \gamma_{i} \prod_{t=1}^{T} (1 + \frac{\eta_{i}}{r_{t}^{k}})$$

We are using $ln(1+r) \ge r - r^2$ in the **analysis**. Put it in **algorithm**?

Indeed, we can start from supermartingale

$$\mathcal{K}_{T} \geq \Phi_{T} = \sum_{k,i} \pi_{k} \gamma_{i} \prod_{t=1}^{T} e^{\eta_{i} r_{t}^{k} - \eta_{i}^{2} v_{t}^{k}} = \sum_{k,i} \pi_{k} \gamma_{i} e^{\eta_{i} R_{T}^{k} - \eta_{i}^{2} V_{T}^{k}}$$

One choice of weights to keep this small:

$$w_{T+1}^{k} = \frac{\sum_{i} \pi_{k} \gamma_{i} e^{\eta_{i} R_{T}^{k} - \eta_{i}^{2} V_{T}^{k} \eta_{i}}}{\sum_{j,i} \pi_{j} \gamma_{i} e^{\eta_{i} R_{T}^{j} - \eta_{i}^{2} V_{T}^{j} \eta_{i}}}$$
(Squint)

$$w_{T+1}^{k} = \frac{\sum_{i} \pi_{k} \gamma_{i} e^{\eta_{i} R_{T}^{k} - \eta_{i}^{2} V_{T}^{k} \eta_{i}}}{\sum_{j,i} \pi_{j} \gamma_{i} e^{\eta_{i} R_{T}^{j} - \eta_{i}^{2} V_{T}^{j} \eta_{i}}}$$
(Squint)

$$w_{T+1}^{k} = \frac{\sum_{i} \pi_{k} \gamma_{i} e^{\eta_{i} R_{T}^{k} - \eta_{i}^{2} V_{T}^{k} \eta_{i}}}{\sum_{j,i} \pi_{j} \gamma_{i} e^{\eta_{i} R_{T}^{j} - \eta_{i}^{2} V_{T}^{j} \eta_{i}}}$$
(Squint)

Maybe a continuous prior on η could help? How to make

$$\int_0^{1/2} \gamma(\eta) e^{\eta R_T^k - \eta^2 V_T^k \eta} \, \mathrm{d}\eta$$

fast?

$$w_{T+1}^{k} = \frac{\sum_{i} \pi_{k} \gamma_{i} e^{\eta_{i} R_{T}^{k} - \eta_{i}^{2} V_{T}^{k} \eta_{i}}}{\sum_{j,i} \pi_{j} \gamma_{i} e^{\eta_{i} R_{T}^{j} - \eta_{i}^{2} V_{T}^{j} \eta_{i}}}$$
(Squint)

Maybe a continuous prior on η could help? How to make

$$\int_0^{1/2} \gamma(\eta) e^{\eta R_T^k - \eta^2 V_T^k \eta} \, \mathrm{d}\eta$$

fast?

- Conjugate $\gamma(\eta) \propto e^{-a\eta-b\eta^2}$. \Rightarrow Truncated Guassian mean.
- Improper $\gamma(\eta) \propto \frac{1}{\eta}$. \Rightarrow Gaussian CDF.

$$w_{T+1}^{k} = \frac{\sum_{i} \pi_{k} \gamma_{i} e^{\eta_{i} R_{T}^{k} - \eta_{i}^{2} V_{T}^{k} \eta_{i}}}{\sum_{j,i} \pi_{j} \gamma_{i} e^{\eta_{i} R_{T}^{j} - \eta_{i}^{2} V_{T}^{j} \eta_{i}}}$$
(Squint)

Maybe a continuous prior on η could help? How to make

$$\int_0^{1/2} \gamma(\eta) e^{\eta R_T^k - \eta^2 V_T^k \eta} \, \mathrm{d}\eta$$

fast?

- Conjugate $\gamma(\eta) \propto e^{-a\eta-b\eta^2}$. \Rightarrow Truncated Guassian mean.
- Improper $\gamma(\eta) \propto \frac{1}{\eta}$. \Rightarrow Gaussian CDF.

Theorem (Koolen and van Erven [2015])

$$R_T^k \leq O\left(\sqrt{V_T^k\left(-\ln \pi_k + \ln \ln T\right)}\right)$$

Squint Conclusion

Computation:

- O(1) time per round (like Hedge, Adapt-ML-Prod, ...)
- Library: https://bitbucket.org/wmkoolen/squint

Regret:

- Adaptive $\sqrt{V_T^k(\ln K + \ln \ln T)}$ bound.
- Implies L* bound, T bound.
- Constant regret in stochastic gap case.

Outline

- 1 Coin Betting
- 2 Defensive Forecasting
- Squint
- 4 MetaGrad

Online Convex Optimisation

Let's play the OCO game.

For t = 1, 2, ...

- Learner plays $w_t \in \mathcal{U}$ (convex, bounded).
- Reality picks $f_t: \mathcal{U} \to \mathbb{R}$ (convex, bounded gradient)
- ullet Learner incurs $f(w_t)$ and observes $abla f_t(w_t)$

Online Convex Optimisation

Let's play the OCO game.

For t = 1, 2, ...

- Learner plays $w_t \in \mathcal{U}$ (convex, bounded).
- Reality picks $f_t: \mathcal{U} \to \mathbb{R}$ (convex, bounded gradient)
- ullet Learner incurs $f(w_t)$ and observes $abla f_t(w_t)$

Goal: small regret w.r.t. all $oldsymbol{u} \in \mathcal{U}$

$$R_T^u = \sum_{t=1}^{I} (f_t(w_t) - f_t(u))$$

Online Convex Optimisation

Let's play the OCO game.

For t = 1, 2, ...

- Learner plays $w_t \in \mathcal{U}$ (convex, bounded).
- Reality picks $f_t: \mathcal{U} \to \mathbb{R}$ (convex, bounded gradient)
- ullet Learner incurs $f(oldsymbol{w}_t)$ and observes $abla f_t(oldsymbol{w}_t)$

Goal: small regret w.r.t. all $u \in \mathcal{U}$

$$R_T^{\boldsymbol{u}} = \sum_{t=1}^T (f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}))$$

Step 1: let's play a harder game with linearised loss

$$f_t(\boldsymbol{w}_t) - f_t(\boldsymbol{u}) \leq \langle \boldsymbol{w}_t - \boldsymbol{u}, \nabla f_t(\boldsymbol{w}_t) \rangle =: r_t^{\boldsymbol{u}}$$

Goal: keep regret small for all $u \in \mathcal{U} \Rightarrow \text{prior } \pi \text{ on } u.$

$$\mathcal{K}_{\mathcal{T}} = \int_{0}^{1/2} \gamma(\boldsymbol{\eta}) \int_{\mathcal{U}} \pi(\boldsymbol{u}) \prod_{t=1}^{I} (1 + \boldsymbol{\eta} r_{t}^{\boldsymbol{u}}) \, \mathrm{d}\boldsymbol{u} \, \mathrm{d}\boldsymbol{\eta}$$

Kan we keep this small?

Goal: keep regret small for all $u \in \mathcal{U} \Rightarrow \operatorname{prior} \pi$ on u.

$$\mathcal{K}_{\mathcal{T}} = \int_{0}^{1/2} \gamma(\boldsymbol{\eta}) \int_{\mathcal{U}} \pi(\boldsymbol{u}) \prod_{t} (1 + \boldsymbol{\eta} r_{t}^{\boldsymbol{u}}) \, \mathrm{d}\boldsymbol{u} \, \mathrm{d}\boldsymbol{\eta}$$

Kan we keep this small?

$$\mathcal{K}_{T+1} - \mathcal{K}_{T}$$

$$=\int_0^{1/2} \gamma(oldsymbol{\eta}) \int_{\mathcal{U}} \pi(oldsymbol{u}) \prod_{t=1}^T (1+oldsymbol{\eta} r_t^{oldsymbol{u}}) oldsymbol{\eta} \left\langle oldsymbol{w}_{T+1} - oldsymbol{u},
abla f_{T+1}(oldsymbol{w}_{T+1})
ight
angle \, \mathrm{d}oldsymbol{u} \, \mathrm{d}oldsymbol{\eta}$$

Goal: keep regret small for all $u \in \mathcal{U} \Rightarrow \operatorname{prior} \pi$ on u.

$$\mathcal{K}_{\mathcal{T}} = \int_{0}^{1/2} \gamma(\boldsymbol{\eta}) \int_{\mathcal{U}} \pi(\boldsymbol{u}) \prod_{t} (1 + \boldsymbol{\eta} r_{t}^{\boldsymbol{u}}) \, \mathrm{d}\boldsymbol{u} \, \mathrm{d}\boldsymbol{\eta}$$

Kan we keep this small?

$$\mathcal{K}_{T+1} - \mathcal{K}_{T}$$

$$=\int_0^{1/2} \gamma({\color{red}\eta}) \int_{\mathcal{U}} \pi({\color{blue}u}) \prod_{t=1}^T (1+{\color{red}\eta} r_t^{{\color{blue}u}}) {\color{red}\eta} \, \langle {\color{blue}w}_{{\color{blue}T}+1}-{\color{blue}u},
abla {\color{blue}f}_{{\color{blue}T}+1}({\color{blue}w}_{{\color{blue}T}+1})
angle \, \, \mathrm{d} {\color{blue}u} \, \mathrm{d} {\color{blue}\eta}$$

Need

$$\int_0^{1/2} \gamma(oldsymbol{\eta}) \int_{\mathcal{U}} \pi(oldsymbol{u}) \prod_t' (1+rac{oldsymbol{\eta}}{oldsymbol{\eta}} r_t^{oldsymbol{u}}) oldsymbol{\eta} \left(oldsymbol{w}_{\mathcal{T}+1} - oldsymbol{u}
ight) \, \mathrm{d}oldsymbol{u} \, \mathrm{d}oldsymbol{\eta} = 0$$

Goal: keep regret small for all $u \in \mathcal{U} \Rightarrow \mathsf{prior} \; \pi \; \mathsf{on} \; u.$

$$\mathcal{K}_{\mathcal{T}} = \int_{0}^{1/2} \gamma(\boldsymbol{\eta}) \int_{\mathcal{U}} \pi(\boldsymbol{u}) \prod_{t} (1 + \boldsymbol{\eta} r_{t}^{\boldsymbol{u}}) \, \mathrm{d}\boldsymbol{u} \, \mathrm{d}\boldsymbol{\eta}$$

Kan we keep this small?

$$\mathcal{K}_{T+1} - \mathcal{K}_{T}$$

$$=\int_0^{1/2} \gamma(oldsymbol{\eta}) \int_{\mathcal{U}} \pi(oldsymbol{u}) \prod_{t=1}^T (1+rac{oldsymbol{\eta} r_t^{oldsymbol{u}}) oldsymbol{\eta}}{oldsymbol{\psi} \langle oldsymbol{w}_{\mathcal{T}+1} - oldsymbol{u},
abla f_{\mathcal{T}+1}(oldsymbol{w}_{\mathcal{T}+1})
angle \; \mathrm{d}oldsymbol{u} \, \mathrm{d}oldsymbol{\eta}$$

Need

$$\int_0^{1/2} \gamma(oldsymbol{\eta}) \int_{\mathcal{U}} \pi(oldsymbol{u}) \prod_{t=1}^{I} (1+rac{oldsymbol{\eta} r_t^{oldsymbol{u}}) oldsymbol{\eta}}{\eta}(oldsymbol{w}_{\mathcal{T}+1}-oldsymbol{u}) \; \mathrm{d}oldsymbol{u} \, \mathrm{d}oldsymbol{\eta} = 0$$

which mandates

$$oldsymbol{w}_{\mathcal{T}+1} = rac{\int_0^{1/2} \gamma(oldsymbol{\eta}) \int_{\mathcal{U}} \pi(oldsymbol{u}) \prod_{t=1}^{\mathcal{T}} (1 + oldsymbol{\eta} oldsymbol{r_t^u}) oldsymbol{\eta} oldsymbol{u} \, \mathrm{d} oldsymbol{\eta}}{\int_0^{1/2} \gamma(oldsymbol{\eta}) \int_{\mathcal{U}} \pi(oldsymbol{u}) \prod_{t=1}^{\mathcal{T}} (1 + oldsymbol{\eta} oldsymbol{r_t^u}) oldsymbol{\eta} \, \mathrm{d} oldsymbol{u} \, \mathrm{d} oldsymbol{\eta}}$$

OCO iProd:

$$oldsymbol{w}_{T+1} = rac{\int_0^{1/2} \gamma(oldsymbol{\eta}) \int_{\mathcal{U}} \pi(oldsymbol{u}) \prod_{t=1}^T (1 + oldsymbol{\eta} r_t^{oldsymbol{u}}) oldsymbol{\eta} oldsymbol{u} \, \mathrm{d}oldsymbol{u} \, \mathrm{d}oldsymbol{\eta}}{\int_0^{1/2} \gamma(oldsymbol{\eta}) \int_{\mathcal{U}} \pi(oldsymbol{u}) \prod_{t=1}^T (1 + oldsymbol{\eta} r_t^{oldsymbol{u}}) oldsymbol{\eta} \, \mathrm{d}oldsymbol{u} \, \mathrm{d}oldsymbol{\eta}}$$

Work needed:

- Picking priors
 - T leking prior.
 - Computation
 - Rates

Prod bound to the rescue

We might also use

$$egin{aligned} oldsymbol{w}_{\mathcal{T}+1} &= rac{\int_0^{1/2} \gamma(oldsymbol{\eta}) \int_{\mathcal{U}} \pi(oldsymbol{u}) e^{oldsymbol{\eta} R^u_{\mathcal{T}} - oldsymbol{\eta}^2 V^u_{\mathcal{T}}} oldsymbol{\eta} oldsymbol{u} \, \mathrm{d} oldsymbol{\eta}}{\int_0^{1/2} \gamma(oldsymbol{\eta}) \int_{\mathcal{U}} \pi(oldsymbol{u}) e^{oldsymbol{\eta} R^u_{\mathcal{T}} - oldsymbol{\eta}^2 V^u_{\mathcal{T}}} oldsymbol{\eta} \, \mathrm{d} oldsymbol{u} \, \mathrm{d} oldsymbol{\eta}} \end{aligned}$$

$$egin{array}{ll} R_T^{m{u}} &=& \sum_{t=1}^T \left\langle w_t - m{u},
abla f_t(m{w}_t)
ight
angle \ V_T^{m{u}} &=& \sum_{t=1}^T \left\langle m{w}_t - m{u},
abla f_t(m{w}_t)
ight
angle^2 \end{array}$$

Prod bound to the rescue

We might also use

$$\boldsymbol{w}_{T+1} = \frac{\int_0^{1/2} \gamma(\boldsymbol{\eta}) \int_{\mathcal{U}} \pi(\boldsymbol{u}) e^{\boldsymbol{\eta} R_T^{\boldsymbol{u}} - \boldsymbol{\eta}^2 V_T^{\boldsymbol{u}}} \boldsymbol{\eta} \boldsymbol{u} \, \mathrm{d} \boldsymbol{u} \, \mathrm{d} \boldsymbol{\eta}}{\int_0^{1/2} \gamma(\boldsymbol{\eta}) \int_{\mathcal{U}} \pi(\boldsymbol{u}) e^{\boldsymbol{\eta} R_T^{\boldsymbol{u}} - \boldsymbol{\eta}^2 V_T^{\boldsymbol{u}}} \boldsymbol{\eta} \, \mathrm{d} \boldsymbol{u} \, \mathrm{d} \boldsymbol{\eta}}$$

$$egin{array}{lll} R_T^{m{u}} &=& \sum_{t=1}^T \left\langle w_t - u,
abla f_t(w_t)
ight
angle \ V_T^{m{u}} &=& \sum_{t=1}^T \left\langle w_t - u,
abla f_t(w_t)
ight
angle^2 \end{array}$$

linear/quadratic in u. \Rightarrow suggests $\pi(u)$ multivariate Normal.

Prod bound to the rescue

We might also use

$$\boldsymbol{w}_{T+1} = \frac{\int_0^{1/2} \gamma(\boldsymbol{\eta}) \int_{\mathcal{U}} \pi(\boldsymbol{u}) e^{\boldsymbol{\eta} R_T^{\boldsymbol{u}} - \boldsymbol{\eta}^2 V_T^{\boldsymbol{u}}} \boldsymbol{\eta} \boldsymbol{u} \, \mathrm{d} \boldsymbol{u} \, \mathrm{d} \boldsymbol{\eta}}{\int_0^{1/2} \gamma(\boldsymbol{\eta}) \int_{\mathcal{U}} \pi(\boldsymbol{u}) e^{\boldsymbol{\eta} R_T^{\boldsymbol{u}} - \boldsymbol{\eta}^2 V_T^{\boldsymbol{u}}} \boldsymbol{\eta} \, \mathrm{d} \boldsymbol{u} \, \mathrm{d} \boldsymbol{\eta}}$$

$$egin{array}{lll} R_T^{m{u}} &=& \sum_{t=1}^T \left\langle w_t - u,
abla f_t(w_t)
ight
angle \ V_T^{m{u}} &=& \sum_{t=1}^T \left\langle w_t - u,
abla f_t(w_t)
ight
angle^2 \end{array}$$

linear/quadratic in u. \Rightarrow suggests $\pi(u)$ multivariate Normal.

But then w_t may end up outside \mathcal{U} . And r_t^u not bounded.

MetaGrad

Let's do it anyway. Turns out it works.

$$oldsymbol{w} = rac{\sum_i \gamma_i \eta_i w_i}{\sum_i \gamma_i \eta_i} \ \gamma_i \leftarrow \gamma_i e^{-\eta_i r_i - \eta_i^2 r_i^2} \ ext{where} \ r_i = (w_i - w)^ op \nabla f_t$$

$$\begin{bmatrix} \Sigma_i \leftarrow (\Sigma_i^{-1} + 2 \textcolor{red}{\eta_i^2} \nabla f_t \nabla f_t^\top)^{-1} \\ w_i \leftarrow \Pi_{\mathcal{U}} \left(w_i - \textcolor{red}{\eta_i} \Sigma_i \nabla f_t \left(1 + 2 \textcolor{red}{\eta_i} r_i \right) \right) \\ \approx \texttt{Online Newton Step} \end{bmatrix}$$

MetaGrad

Let's do it anyway. Turns out it works.

$$egin{aligned} oldsymbol{w} &= rac{\sum_i \gamma_i \eta_i w_i}{\sum_i \gamma_i \eta_i} \ \gamma_i \leftarrow \gamma_i \mathrm{e}^{-\eta_i r_i - \eta_i^2 r_i^2} \ & ext{where} \ r_i &= (oldsymbol{w}_i - oldsymbol{w})^ op
abla f_t \end{aligned}$$

Tilted Exponential Weights

$$egin{aligned} \Sigma_i \leftarrow (\Sigma_i^{-1} + 2 \eta_i^2
abla f_t
abla f_t^ op)^{-1} \ w_i \leftarrow \Pi_{\mathcal{U}} \left(w_i - \eta_i \Sigma_i
abla f_t \left(1 + 2 \eta_i r_i
ight)
ight) \ &pprox ext{Online Newton Step} \end{aligned}$$

Theorem

The regret of MetaGrad is bounded by

$$R_T = O\left(\min\left\{\sqrt{T}, \sqrt{V_T^{u^*} d \ln T}\right\}\right)$$

Consequences

What's new with $\sqrt{V_T d \ln T}$?

Consequences

What's new with $\sqrt{V_T d \ln T}$?

Corollary

For α -exp-concave or α -strongly convex losses, MetaGrad ensures

$$R_T = O(d \ln T)$$

without knowing α .

Consequences

What's new with $\sqrt{V_T d \ln T}$?

Corollary

For α -exp-concave or α -strongly convex losses, MetaGrad ensures

$$R_T = O(d \ln T)$$

without knowing α .

Corollary (Koolen, Grünwald, and van Erven [2016])

For any β -Bernstein \mathbb{P} , MetaGrad keeps the expected regret below

$$\mathbb{E} R_T^* \leq O\left((d \ln T)^{\frac{1}{2-\beta}} T^{\frac{1-\beta}{2-\beta}}\right)$$

without knowing β .

Conclusion

A simple factor $(1+ \frac{\eta}{r_t})$ stretches surprisingly far.