An Introduction to Online Convex Optimization

Wouter M. Koolen

CWI
Centrum Wiskunde & Informatica

ILPS Lunch, Friday 12th May, 2017
About me

Tenure tracker in CWI Machine Learning group on VENI grant

I work on Machine Learning Theory
- Online learning
- Easy data
- Game tree search

Adversarial Intelligence blog

http://blog.wouterkoolen.info

Local chair COLT’17 Amsterdam ← check it out!
Grand Goal of Machine Learning

Design systems that improve performance by learning from data.

\[\text{system} + \text{data} = \text{better system} \]

- Batch learning: training \rightarrow production
- Online learning: continuously improving.
Overview of today’s content

- Example
- OCO problem
- Classic algorithm for OCO
- Modern OCO developments
Example: spam classification (linear model)

- A new email arrives.
 Encoded as feature vector x_t (bag of words, ...)
- System assigns a spam rating $w_t^T x_t$
 Puts it in inbox or spam folder
- User intervenes if misclassified 😊
 System gets actual label $y_t = \{-1, +1\}$

Question: How to pick w_t?

We need a loss function. Variety of choices:

- square loss $(w_t^T x_t - y_t)^2$
- logistic loss $-\ln \left(1 + e^{-y_t w_t^T x_t}\right)$
- hinge loss $\max\{0, 1 - y_t w_t^T x_t\}$
Example: spam classification (linear model)

- A new email arrives.
 Encoded as feature vector x_t (bag of words, ...)
- System assigns a spam rating $w_t^T x_t$
 Puts it in **inbox** or **spam folder**
- User intervenes if misclassified 😊
 System gets actual label $y_t = \{-1, +1\}$

Question

How to pick w_t?
Example: spam classification (linear model)

- A new email arrives.
 - Encoded as feature vector x_t (bag of words, ...)
- System assigns a spam rating $w_t^T x_t$
 - Puts it in **inbox** or **spam folder**
- User intervenes if misclassified 😞
 - System gets actual label $y_t = \{-1, +1\}$

Question

How to pick w_t?

We need a loss function. Variety of choices:

- **Square loss** $\left(w_t^T x_t - y_t \right)^2$
- **Logistic loss** $- \ln \left(1 + e^{-y_t w_t^T x_t} \right)$
- **Hinge loss** $\max\{0, 1 - y_t w_t^T x_t\}$
What is OCO and why is it useful?

- Model for sequential decision making problems like spam filtering, portfolio investment, route planning, data compression, etc ...
- Close fit to a range of practical problems
- Very crisp (theoreticians)
- Many of the features of hard, complex problems
- Powerful and principled methods
- Basis of reductions
 - online to batch (for statistical learning)
 - bandits (for partial information problems)
 - saddle point problems (solving games)
 - non-convex problems
Online Convex Optimisation, Protocol
Online Convex Optimisation, Protocol

\[f_1(w_1), \nabla f_1(w_1), w_2 f_2(w_2), \nabla f_2(w_2), \ldots \]
Online Convex Optimisation, Protocol

\[w_1 \quad f_1(w_1), \quad \nabla f_1(w_1) \quad w_2 \quad f_2(w_2), \quad \nabla f_2(w_2) \ldots \]
Online Convex Optimisation, Protocol

\[f_1(w_1), \nabla f_1(w_1) \]
Online Convex Optimisation, Protocol

$f_1(w_1), \nabla f_1(w_1)$
Online Convex Optimisation, Protocol

\[f_1(w_1), \nabla f_1(w_1) \]

\[f_2(w_2), \nabla f_2(w_2) \]
Online Convex Optimisation, Protocol

\[f_1(w_1), \nabla f_1(w_1) \]

\[f_2(w_2), \nabla f_2(w_2) \]
Online Convex Optimisation, Protocol
Online Convex Optimisation, Objective

\[R_T = \sum_{t=1}^{T} f_t(w_t) - \min_{u} \sum_{t=1}^{T} f_t(u) \]

Definition (Regret)

- **Online loss**
- **Optimal loss**
Online Gradient Descent [Zinkevich, 2003]

\[\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f_t(\mathbf{w}_t) \]
Online Gradient Descent [Zinkevich, 2003]

\[w_{t+1} = w_t - \eta \nabla f_t(w_t) \]

\[= \arg \min_w \sum_{s=1}^{t} w^\top \nabla f_s(w_s) + \frac{1}{\eta} \|w\|^2 \]
Online Gradient Descent [Zinkevich, 2003]

\[\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla f_t(\mathbf{w}_t) \]

\[= \arg \min_{\mathbf{w}} \sum_{s=1}^{t} \mathbf{w}^\top \nabla f_s(\mathbf{w}_s) + \frac{1}{\eta} \| \mathbf{w} \|^2 \]

Worst-case regret guarantee:

\[R_T = O \left(\sqrt{T} \right) \]
Online Gradient Descent [Zinkevich, 2003]

\[w_{t+1} = w_t - \eta \nabla f_t(w_t) \]

\[= \arg \min_w \sum_{s=1}^{t} w^T \nabla f_s(w_s) + \frac{1}{\eta} \| w \|^2 \]

Worst-case regret guarantee:

\[R_T = O\left(\sqrt{T}\right) \]
Modern OCO

Question

Can we improve performance by using more domain knowledge?
Modern OCO

Question
Can we improve performance by using more domain knowledge?

Refined measures of complexity of OCO problems
- Gradient norms (maybe the gradients vanish)
- Curvature (strongly convex, exp concave, mixable)
- Stochastic scenarios (not adversarial but friendly data)
Question

Can we improve performance by using more domain knowledge?

Refined measures of complexity of OCO problems

- Gradient norms (maybe the gradients vanish)
- Curvature (strongly convex, exp concave, mixable)
- Stochastic scenarios (not adversarial but friendly data)

In both cases the key is

- Adaptive tuning of the learning rate
- Knowledge about the loss beyond convexity (add quadratic)

Go-to algorithms: AdaGrad, Online Newton Step, MetaGrad
Conclusion

I hope you got a flavour of OCO.

Happy to discuss in more detail.

Thanks!