An Introduction to Online Convex Optimization

ILPS Lunch, Friday 12th May, 2017

About me

Tenure tracker in CWI Machine Learning group on VENI grant

I work on Machine Learning Theory

- Online learning
- Easy data
- Game tree search

Adversarial Intelligence blog

Local chair COLT'17 Amsterdam \leftarrow check it out!

Design systems that improve performance by learning from data.

 $\mathsf{system} + \mathsf{data} \; = \; \mathsf{better} \; \mathsf{system}$

- \bullet Batch learning: training \rightarrow production
- Online learning: continuously improving.

Overview of today's content

- Example
- OCO problem
- Classic algorithm for OCO
- Modern OCO developments

Example: spam classification (linear model)

- A new email arrives.
 Encoded as feature vector x_t (bag of words, ...)
- System assigns a spam rating $w_t^{\mathsf{T}} x_t$ Puts it in **inbox** or spam folder
- User intervenes if misclassified ③
 System gets actual label y_t = {-1, +1}

Example: spam classification (linear model)

- A new email arrives.
 Encoded as feature vector x_t (bag of words, ...)
- System assigns a spam rating $w_t^{\mathsf{T}} x_t$ Puts it in **inbox** or spam folder
- User intervenes if misclassified ⁽³⁾
 System gets actual label y_t = {-1, +1}

Question

How to pick w_t ?

Example: spam classification (linear model)

- A new email arrives.
 Encoded as feature vector x_t (bag of words, ...)
- System assigns a spam rating $w_t^{\mathsf{T}} x_t$ Puts it in **inbox** or spam folder
- User intervenes if misclassified ⁽³⁾
 System gets actual label y_t = {-1, +1}

Question

How to pick w_t ?

We need a loss function. Variety of choices:

What is OCO and why is it useful?

- Model for sequential decision making problems like spam filtering, portfolio investment, route planning, data compression, etc ...
- Close fit to a range of practical problems
- Very crisp (theoreticians)
- Many of the features of hard, complex problems
- Powerful and principled methods
- Basis of reductions
 - online to batch (for statistical learning)
 - bandits (for partial information problems)
 - saddle point problems (solving games)
 - non-convex problems

Online Convex Optimisation, Objective

Definition (Regret)

$$R_{T} = \underbrace{\sum_{t=1}^{T} f_{t}(w_{t})}_{\text{Online loss}} - \underbrace{\min_{u} \sum_{t=1}^{T} f_{t}(u)}_{\text{Optimal loss}}$$

$$oldsymbol{w}_{t+1} \;=\; oldsymbol{w}_t - oldsymbol{\eta}
abla oldsymbol{f}_t(oldsymbol{w}_t)$$

$$egin{aligned} oldsymbol{w}_{t+1} &= oldsymbol{w}_t - oldsymbol{\eta}
abla f_t(oldsymbol{w}_t) \ &= rgmin_w \sum_{s=1}^t oldsymbol{w}^{ op}
abla_s(oldsymbol{w}_s) + rac{1}{\eta} \|oldsymbol{w}\|^2 \end{aligned}$$

$$egin{aligned} oldsymbol{w}_{t+1} &= oldsymbol{w}_t - rac{\eta}{\eta}
abla f_t(oldsymbol{w}_t) \ &= rgmin_w \sum_{s=1}^t w^\intercal
abla f_s(oldsymbol{w}_s) + rac{1}{\eta} \|oldsymbol{w}\|^2 \end{aligned}$$

Worst-case regret guarantee:

$$R_T = O\left(\sqrt{T}\right)$$

$$oldsymbol{w}_{t+1} = oldsymbol{w}_t - rac{\eta}{\eta}
abla f_t(oldsymbol{w}_t) \ = rgmin_w \sum_{s=1}^t w^\intercal
abla f_s(oldsymbol{w}_s) + rac{1}{\eta} \|w\|^2$$

Worst-case regret guarantee:

Modern OCO

Question

Can we improve performance by using more domain knowledge?

Modern OCO

Question

Can we improve performance by using more domain knowledge?

Refined measures of complexity of OCO problems

- Gradient norms (maybe the gradients vanish)
- Curvature (strongly convex, exp concave, mixable)
- Stochastic scenarios (not adversarial but friendly data)

Modern OCO

Question

Can we improve performance by using more domain knowledge?

Refined measures of complexity of OCO problems

- Gradient norms (maybe the gradients vanish)
- Curvature (strongly convex, exp concave, mixable)
- Stochastic scenarios (not adversarial but friendly data)

In both cases the key is

- Adaptive tuning of the learning rate
- Knowledge about the loss beyond convexity (add quadratic)

Go-to algorithms: AdaGrad, Online Newton Step, MetaGrad

Conclusion

I hope you got a flavour of OCO.

Happy to discuss in more detail.

Thanks!