

Booking.com

Problem

- A/B/n testing compares multiple website versions (called arms) the one with the highest conversion.
- Online firms deploy the arms that satisfy multiple constraints etc.), as long as it is better than the baseline, the control arm.
- All Arms Better than the Control (**ABC**)
- \neq Best arm identification (**BAI**)
- \neq Better than a Threshold

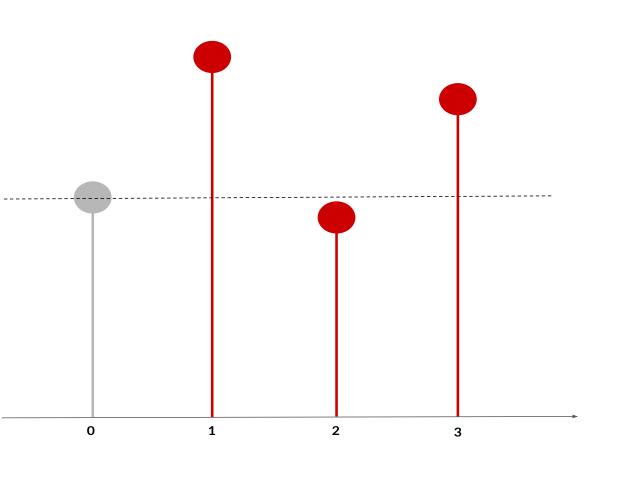


Figure 1: For the ABC problem we need to sample more arms 0 and 2, for the need to sample more 1 and 3 and for thresholding bandit we need to sample more 2known).

Challenge

Limitations of conventional A/B/n:

1. Uniform allocation of options to users is inefficient 2. Pre-determined experiment duration can be conservative

We aim to optimise ada 1. the allocation of optior

2. the stopping time of th experiment

ightarrow Traditional stochastic bandits assume that the arm samples are i real world data exhibit inhomogeneity, for instance seasonality pattern

Objective

Identify the set of Arms that are Better than the Control in the pres populations (ABC-S):

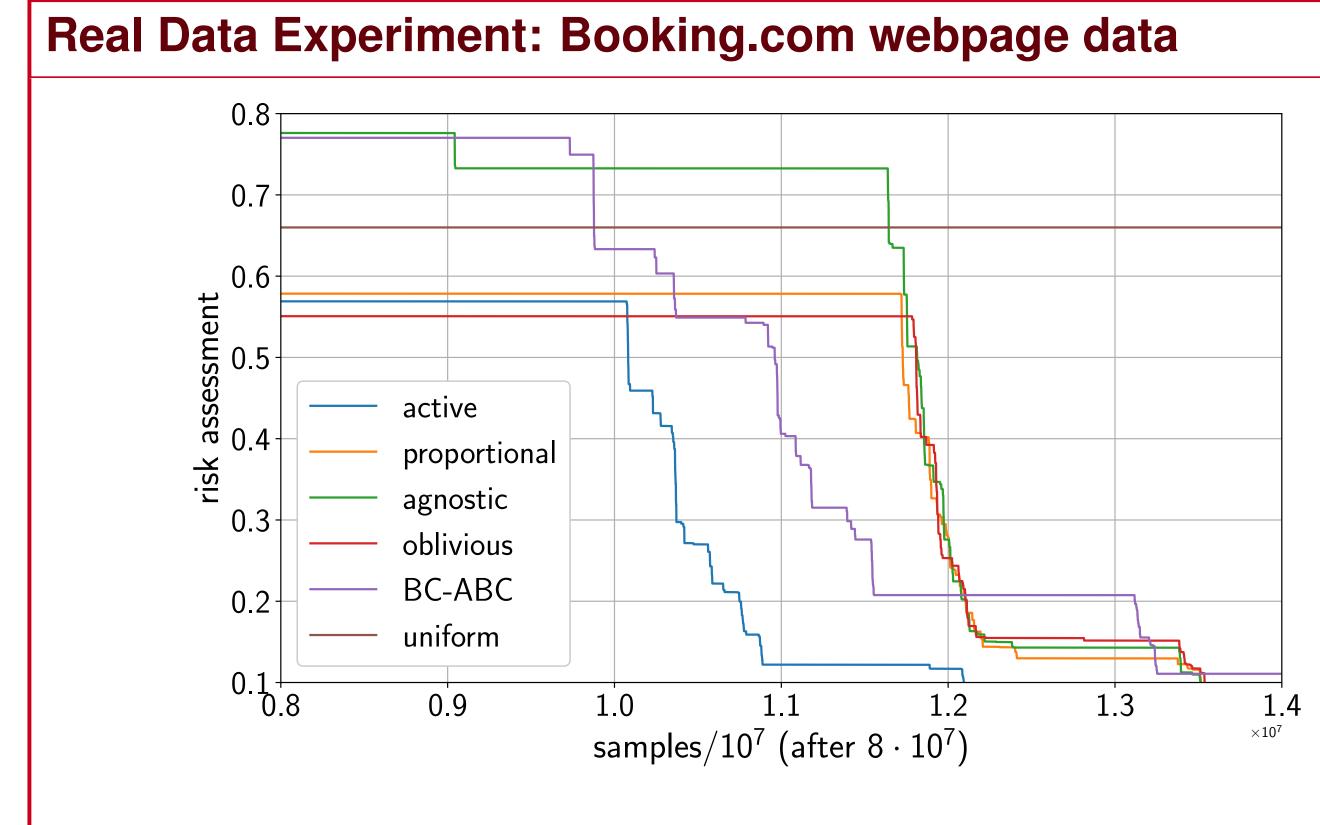
$$\mathcal{S}_{\boldsymbol{\beta}}(\boldsymbol{\mu}) = \left\{ a \in \{1, \dots, K\} \text{ s.t } \sum_{i=1}^{J} \beta_i \mu_{a,i} > \sum_{i=1}^{J} \beta_i \mu_{0,i} \right\}$$

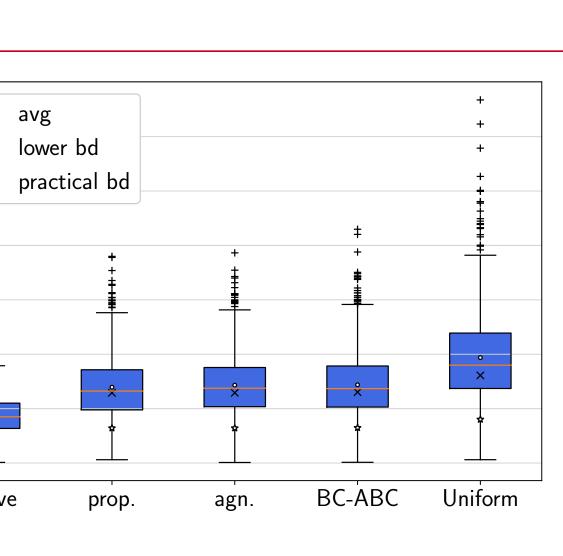
in the *fixed confidence* setting, i.e. for any *risk level* δ the probabilities an incorrect answer must be $\leq \delta$.

The user at time t belongs to a subpopulation $I_t \in \{1, \ldots, J\}$

- α_i is the natural proportion of subpopulation i
- $\mu_{a,i}$ is the mean reward of arm a for the *i*-th subpopulation
- $\beta = (\beta_i)_{i=1,...,J}$ are known user-defined population weight value of an arm

$$\mu_a = \sum_{i=1}^J \beta_i \mu_{a,i} \; .$$




A/B/n Testing with Control in the Presence of Subpopulations Yoan Russac¹, Christina Katsimerou², Dennis Bohle²,

Olivier Cappé¹, Aurélien Garivier³ & Wouter M. Koolen⁴ ¹ CNRS & ENS, ² Booking.com, ³ ENS Lyon, ⁴ CWI

	Different modes of intera	ction with the subpopulations				
<i>ms</i>) to determine	1. Pick A_t	1. Pick A_t	1.	See $I_t \sim oldsymbol{lpha}$	1. Pick A_t and I_t	
ts (cost, strategy, m.	2. Don't see $I_t \sim oldsymbol{lpha}$	2. See $I_t \sim oldsymbol{lpha}$	2.	Pick A_t	2. See $X_t \sim \nu_{A_t,I_t}$	
	3. See $X_t \sim \nu_{A_t,I_t}$ 3. See $X_t \sim \nu_{A_t,I_t}$		3.	3. See $X_t \sim \nu_{A_t,I_t}$		
	Oblivious	Agnostic		Proportional	Active	
	Theoretical guarantees			Complexity of the learning problems		
	For any strategy, the expected number of rounds for the ABC-S problem satis		satisfies	As By remarking that $C_{agnostic} \subset C_{prop} \subset C_{active}$, it holds that		
	$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}]}{\ln(1/\delta)} \ge T^{\star}(\boldsymbol{\mu}) , \qquad (1)$ where $T^{\star}(\boldsymbol{\mu})^{-1} = \max_{\boldsymbol{w} \in \mathcal{C}} \min_{b \neq 0} \inf_{\boldsymbol{\lambda} \in \mathcal{L}: \lambda_{0} < \lambda_{b}} \sum_{a \in \{0, b\}} \sum_{i=1}^{J} w_{a,i} d(\mu_{a,i}, \lambda_{a,i}) .$		(1)) $\forall \mu \in \mathcal{L}, T^{\star}_{\text{active}}(\mu) \leq T^{\star}_{\text{proportional}}(\mu) \leq T^{\star}_{\text{agnostic}}(\mu)$. (2) When $\alpha = \beta$, for a <i>safely calibrated</i> oblivious policy, we further have		
				$orall oldsymbol{\mu} \in \mathcal{L}, T^{\star}_{ ext{agnostic}}(oldsymbol{\mu}) \leq T^{\star}_{ ext{oblivious}}(oldsymbol{\mu})$. (3		(3)
he BAI problem we	Track-and-Stop Algorithm					
e 2 (control mean is	For $t \ge 1$: • Sampling rule: given the current estimates			• <u>Recommendation</u> : $S(\hat{\mu}_t) = \{a \in \{1, \dots, K\} : \hat{\mu}_a(t) > \hat{\mu}_0(t)\}$ at confidence level $\hat{\delta}_t = \min\{\delta \in (0, 1) \Lambda(t) \ge \beta(t, \delta)\}$, obtained by inverting the threshold $\beta(t, \delta)$ at the GLR statistic		
daptively : ions to users	1. estimate the target weights w_t by (numerically) optimising the instance dependent lower bound $T^\star(\hat{\mu}_t)^{-1}$ at the estimate $\hat{\mu}_t$			$\Lambda(t) = \min_{b \neq 0} \inf_{\boldsymbol{\lambda} \in \mathcal{L}: \lambda_0 = \lambda_b} \sum_{a \in \{0, b\}} \sum_{i=1}^J N_{a,i}(t) d(\hat{\mu}_{a,i}(t), \lambda_{a,i}) . $ (4)		
the A/B/n	2. pick arm $\begin{cases} \text{active:} & (A_t, I_t) \in \operatorname{argmax}_{a,i} N_{a,i}(t-1) - t \boldsymbol{w}_t(a, i) \\ \text{proportional:} & A_t \in \operatorname{argmax}_a N_{a,I_t}(t-1) - t \alpha_{I_t} \boldsymbol{w}_t(a I_t) \\ \text{agnostic:} & A_t \in \operatorname{argmax}_a N_a(t-1) - t \boldsymbol{w}_t(a) \end{cases}$			• <u>Calibration</u> : For $\beta(t, \delta) = 6J \ln \ln t + \ln \frac{1}{\delta} + K + 2J \cdot O(\ln \ln \frac{1}{\delta})$, Track-and-Stop is <i>safely calibrated</i> :		
re i.i.d., whereas atterns.		$t \in \operatorname{Grieva}_{a} - t (0) = t (0)$		$orall oldsymbol{\mu} \in \mathcal{L}, \ orall oldsymbol{a}$	$\delta \in (0,1), \mathbb{P}_{\mu}\left(\exists t \geq 1 : \hat{\mathcal{S}}_t \neq \mathcal{S}(\mu) \cap \hat{\delta}_t \leq \delta\right) \leq \delta.$	(5)
	Numerical Results			Real Data Experi	ment: Booking.com webpage data	
presence of <i>Sub</i> -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7000 • avg • lower bd 50000 × practical bd	+ + + + + + + + + + + + + + + + + + + +	0.8		
<pre> } , bility of returning </pre>	e e e e e e e e e e e e e e e e e e e	40000 40000 30000 20000 10000 active prop. agn. BC-ABC	C Uniform	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} $	ctive roportional gnostic	
	old $\ln((1 + \ln t)/\delta)$ works we	tion on a log-log scale. In practice the ell. (Right) Stopping time boxplot for when $eta=[1/3,1/3,1/3], lpha=[0.4,0.5,1]$	for μ =	0.2 - B	blivious C-ABC niform 0.9 1.0 1.1 1.2 1.3 $1.4samples/107 (after 8 \cdot 10^7)$	
<i>ths</i> defining the				the baseline. Both co	pares $K = 2$ copies of a component of the webpage a opies are better than the control. Due to global traffication patterns within a day. We treat the $J = 4$ sease	fic, the

UVPA ENS DE LYON

$$= \lambda_b \sum_{a \in \{0,b\}} \sum_{i=1}^J N_{a,i}(t) d(\hat{\mu}_{a,i}(t), \lambda_{a,i}) .$$
(4)