Our new algorithm Squint

- adapts to the difficulty of the learning problem by learning the learning rate,
- thereby integrating both the popular second-order and quantile adaptivities,
- at the run time of standard Hedge.

\[R_k^T < \sqrt{V_k^T \ln K} \] for each expert \(k \)

for some second-order \(V_k^T \leq L_k^T \leq T \)

- stochastic case, learning sub-algorithms
- specialized algorithms, hard-coded in K.

Three priors

1. Uniform prior (generalizes to conjugate)
\[\gamma(\eta) = 2 \]
Efficient algorithm, \(C_T = \ln V_f^T \).
2. Chernov-Vovk (2010) prior
\[\gamma(\eta) = \frac{\ln 2}{\eta \ln^2(\eta)} \]
Not efficient, \(C_T = \ln V_f^T \).
3. Improper(!) log-uniform prior
\[\gamma(\eta) = \frac{1}{\eta} \]
Efficient algorithm, \(C_T = \ln V_f^T \).

Extensions

Combinatorial concept class \(C \subseteq \{0,1\}^K \):
- Shortest path
- Spanning trees
- Permutations

Component Squint guarantees:
\[R_k^T < \sqrt{V_f^T (\text{comp}(u) + K C_T)} \] for each \(u \in \text{conv}(C) \).

The reference set of experts \(K \) is subsumed by an “average concept” vector \(u \in \text{conv}(C) \), for which our bound relates the coordinate-wise average regret \(R_u^T = \sum_k u_k r_k^T \) to the averaged variance \(V_f^T = \sum_k u_k (r_k^T)^2 \) and the prior entropy \(\text{comp}(u) \).

Future work

Loss range adaptivity, bandits, online convex optimization

Hedge setting

\(K \) experts

In round \(t = 1, 2, \ldots \)
- Learner plays a probability distribution \(w_t = (w_{t1}, \ldots, w_{tk}) \) on experts
- Adversary reveals the expert loss vector \(\epsilon_t = (\epsilon_{t1}, \ldots, \epsilon_{tk}) \in [0,1]^k \)
- Learner incurs loss \(w_t^T \epsilon_t \)

The goal is to have small regret
\[R_k^T := \sum_{t=1}^T w_t^T \epsilon_t \]

with respect to every expert \(k \) at every time \(T \).

Second-order adaptivity

Choose \(k \) and fix \(\gamma = \frac{R_k^T}{2V_k^T} \). Now as
\[1 \geq \Phi_T \geq \pi(k) \gamma(\eta) e^{R_k^T - \eta V_k^T} = \pi(k) \gamma(\eta) e^{\frac{R_k^T}{2V_k^T}} \]
we have
\[R_k^T \leq 2 \sqrt{V_f^T (\ln \pi(k) - \ln \gamma(\eta))} \]
For quantile bound take \(\sum_{k \in K} \)

Quantile adaptivity

Prior \(\pi \) on experts:
\[\min_{k \in K} R_k^T < \sqrt{T \ln \pi(K)} \] for each subset \(K \) of experts

- over-discretization, company baseline
- specialized algorithms, hard-coded

“Impossible tunings”. Efficiency.

Squint guarantees both

Squint algorithm with bound
\[R_k^T < \sqrt{V_k^T (-\ln \pi(K) + C_T)} \] for each subset \(K \) of experts

where \(R_k^T = E_{\pi(K)} R_k^T \) and \(V_k^T = E_{\pi(K)} V_k^T \)
denote the average (under the prior \(\pi \)) among the reference experts \(k \in K \) of the cumulative regret \(R_k^T = \sum_{t=1}^T r_t^k \) and the (uncentered) variance of the excess losses \(V_k^T = \sum_{t=1}^T (r_t^k)^2 \) (where \(r_t^k = (w_t - e_t^k)^T \epsilon_t^k \).

Pretty two-line proof

Squint potential motivation

Fix prior \(\pi \) on experts \(k \in \{1, \ldots, K\} \) and prior \(\gamma \) on learning rates \(\eta \in [0,1/2] \).

Potential function (weighted sum of objectives)
\[\Phi_k := \mathbb{E}_{\pi(k)}[\gamma (e^{R_k^T - \eta V_k^T})] \]

and associated weights
\[w_{t+1} := \pi(k) E_{\pi(k)}[\gamma (e^{R_k^T - \eta V_k^T})] \]

constant time per expert per round

Regret guarantee

Choose \(k \) and fix \(\gamma = \frac{R_k^T}{2V_k^T} \). Now as
\[1 \geq \Phi_T \geq \pi(k) \gamma(\eta) e^{R_k^T - \eta V_k^T} = \pi(k) \gamma(\eta) e^{\frac{R_k^T}{2V_k^T}} \]
we have
\[R_k^T \leq 2 \sqrt{V_f^T (\ln \pi(k) - \ln \gamma(\eta))} \]
For quantile bound take \(\sum_{k \in K} \)

Classic Hedge result

The Hedge algorithm with learning rate \(\eta \)
\[w_{t+1} := \frac{e^{-|\epsilon|_1}}{\sum e^{-|\epsilon|_1}} \quad \text{where} \quad L_k^T = \sum_{t=1}^T e_t^k \]

upon proper tuning of \(\eta \) ensures
\[R_k^T < \sqrt{T \ln K} \] for each expert \(k \).

Tight for adversarial (worst-case) losses. Underwhelming in practice.