Motivation

- Distant goal: online isotonic regression on partial orders
- Current solution for linear orders does not scale

> New model and algorithms for linear case

Random Permutation Model

Random Permutation Model

- Adversary chooses data instances \(x_1 < \ldots < x_T, y_1, \ldots, y_T \)
- Sample UAR a permutation \(\sigma = (\sigma_1, \ldots, \sigma_T) \) of \(\{1, \ldots, T\} \)
- Round \(t \): covariate \(x_{\sigma_t} \), true label \(y_{\sigma_t} \), and loss \((\hat{y}_{\sigma_t} - y_{\sigma_t})^2\)

Learner minimizes expected regret,

\[
R_T := E_x \left[\sum_{t=1}^T (y_{\sigma_t} - \hat{y}_{\sigma_t})^2 \right] - L_T = \sum_{t=1}^T r_t,
\]

where \(r_t := E_x [(y_{\sigma_t} - \hat{y}_{\sigma_t})^2 - L^*_t] \) is the per-round regret and \(L^*_t = L^t ((x_{\sigma_t}, y_{\sigma_t}), \ldots, (x_{\sigma_t}, y_{\sigma_t})) \) is the optimal loss of the first \(t \) labeled instances.

Random Permutation Online Isotonic Regression

Fit an isotonic (non-decreasing) function to the data:

\[
f^* = \arg\min_{f\text{ isotonic}} \sum_{i=1}^T (y_i - f(x_i))^2
\]

Offline Isotonic Regression

- Iteratively merge data into blocks until no violator of isotonic constraints exists
- Assign to data in each block the average of their labels \(y_i \)
- Blocks correspond to level sets of \(f^* \)

Leave-One-Out Loss

With Data \(D = \{(x_1, y_1), \ldots, (x_T, y_T)\} \), the \(\ell_{oo} \) of a \(t \) round game is

\[
\ell_{oo}(D) := \frac{1}{t} \left(\sum_{i=t+1}^T (y_i - \hat{y}_i (D \setminus (x_i, y_i)))^2 \right) - L^*(D).
\]

Lemma 1. \(r_t(D) \leq \ell_{oo}(D) \) for any \(t \) and any data set \(D = \{(x_1, y_1), \ldots, (x_T, y_T)\} \).

Lower Bound

Adversarial lower bound [Kotlowski, Koolen, and Malek, 2016] applies to random permutation model: \(\ell_{oo} = \Omega(t^{-2/3}) \).

Matching Bounds

Theorem 2. There is an algorithm for the random-permutation model with excess leave-one-out loss \(\ell_{oo} = \widetilde{O}(t^{-2}) \) and hence expected regret \(R_T \leq \sum_t \tilde{O}(t^{-2}) = \tilde{O}(T^2) \), which matches the lower bound of \(\ell_{oo} = \Omega(t^{-2/3}) \).

Caveat: algorithm is not efficient (on partial orders!)

Forward Algorithm

Two observations:

- PAVA is efficient and generalizes to partial orders
- Follow The Leader algorithms are common in practice

Forward Algorithm: To predict at \(x_t \), imagine \(y'_t \in [0, 1] \), compute \(f^* \) on \(\{(x_1, y'_1) \ldots (x_{t-1}, y'_{t-1})\} \cup \{(x_t, y'_t)\} \), and play \(\hat{y}_{t} = f^*(x_t) \).

Regret Bounds

- IR-Int: Compute \(f^* \) on past data. Predict with average of \(f^* \) at nearest \(x_t \).
- Interpolation \(\hat{y}_i = \lambda_1 y_1 + (1 - \lambda_1) y_T \) (where \(y_0^T \) and \(y_T^T \) are plug-in \(y'_0 = 0^T \) and plug-in \(y'_T = 1^T \))
- Last step minimax:

\[
\hat{y}_i = \arg\min_{y \in [0, 1]} \max_{y' \in [0, 1]} \left\{ (\hat{y}_i - y_i)^2 - L^t(y) \right\}
\]

- IVAP predictors [Vovk et al., 2015]:

\[
\hat{y}_i = \frac{y_i^2}{y_i^2 + 1 - y_i^2}, \quad \hat{y}_i = \frac{1 + (y_i^T)^2 - (1 - y_i^T)^2}{2}
\]

Heavy-\(\gamma \)

Parameters: Weight \(c > 0 \) and label \(\gamma \in [0, 1] \).

- Algorithm: To predict at \(x_t \)

 - Compute isotonic regression \(f^* \) on weighted dataset

\[
D' := \{(x_s, y_s, 1) \mid 1 \leq s \leq t \} \cup \{(x_t, \gamma, c)\}
\]

- Predict \(y_t = f^*(x_t) \)

Efficient weighted algorithms available [Kynig et al., 2015].

Tuning Heavy-\(\gamma \)

Any fixed label \(\gamma \) works. We like \(\gamma = 1 \).

(Not all adaptive labels work. Fixed point + lower bound.)

Theorem 5. Heavy-\(\gamma \) has sub-optimal \(\ell_{oo} \) loss unless \(c = \Theta(t^{1/2}) \).