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Topic: Pure Exploration

We want to answer a question about the
parameters of a stochastic bandit.
•K arms with unknown distribution parameters
(vector µ of means).
•A query. Ex: is there an arm with mean µ < 0 ?
→ correct answer at µ is given by function i∗(µ)
•At each stage, choose an arm and get an
observation from the arm.
•Decide when to stop and return an answer.
Goals:
• answer correctly with probability > 1− δ.
• small sample complexity:
stop at τδ s.t. Eµ[τδ] is small.

∃k, µk < 0 ? argmaxk µk ? signs of all µk ?

Exploration as a Game

Lower Bound, with value of a game:

Eµ[τδ] ≥ log(1
δ
)/ max
w∈4K

inf
λ∈¬i∗(µ)

K∑
k=1

wkd(µk, λk)

Optimal fixed sampling:
w∗ = argmaxw∈4K

infλ∈¬i∗(µ)
∑K
k=1w

kd(µk, λk)

Previous work: Track and Stop

•my estimate µ̂t has answer YES.
• the optimal way to sample at µ̂t from the lower
bound is w∗t .
• I sample to track w∗t (+ forced exploration)
Is asymptotically optimal (but sometimes very
asymptotically).
Need argmaxw∈4K

infλ∈¬i∗(µ̂t)
∑K
k=1w

kd(µ̂kt , λk)
at every time step.
Relies on forced exploration, not adaptive to data.

Solving bandit pure exploration
problems with games is

computationally efficient and has
optimal asymptotic sample

complexity.

Our Strategy

Emulate Nature with a second algorithm.
Get two algorithms playing against each other.
•Alg: my estimate µ̂t has answer YES.
•Nature: but here is λt with answer NO which
could have generated the same data with
relatively high probability.
•Alg: then I sample kt s.t. if µ ≈ µ̂t (+optimism),
I get maximal evidence for µ 6= λt.

Why it works

As long as we do not stop:

log 1
δ
≥ inf
λ∈¬it

K∑
k=1

Nk
t d(µk, λk) (stop rule)

≈ inf
λ∈¬i∗

t∑
s=1

K∑
k=1

wk
sd(µk, λk) (tracking)

≥
t∑

s=1

K∑
k=1

wk
s Eλ∼qs d(µk, λk)−Rλ

t (regret λ)

≥ max
k

t∑
s=1

Eλ∼qs d(µk, λk)−Rλ
t −Rk

t (regret k)

≥ t inf
q∈P(¬i∗)

max
k

Eλ∼q d(µk, λk)−O(
√
t)

But µ unknown → optimism to explore efficiently.

Results

•Non-asymptotic sample complexity guarantees
•Asymptotically optimal
•Need only argminλ∈¬i∗(µ̂t)

∑K
k=1N

k
t−1d(µ̂kt , λk).

→ better computational complexity.
Up to 100× faster than T-and-S on best arm
identification.
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Figure 1:Track and Stop can fail, even for δ = e−10. Our
algorithms are (provably) good.

Algorithm

Inputs:
•Algorithms Ak and Aλ, full information
adversarial regret minimization algorithms.
• stopping threshold β(t, δ) ≈ log log t

δ , exploration
bonus f (t) ≈ log t.

Algorithm:
•Sample each arm once and form estimate µ̂K. For
t = K + 1, . . .
• For k ∈ [K], let [αkt , βkt ] = {ξ : Nk

t−1d(µ̂kt−1, ξ) ≤ f (t−1)}.
(KL confidence intervals)
• Let it = i∗(µ̂t−1).
• Stop and output ı̂ = it if

infλ∈¬it
∑
kN

k
t−1d(µ̂kt−1, λ

k) > β(t, δ). (GLRT Stopping
rule)
•Get wt and qt from Akit and A

λ
it
.

• For k ∈ [K], let Uk
t = maxξ∈{αkt ,βkt }Eλ∼qt d(ξ, λ

k).
(Optimism)
• Feed Akit the loss `wt (w) = −∑K

k=1w
kUk

t .
• Feed Aλit the loss `λt (q) = Eλ∼q

∑K
k=1w

k
t d(µ̂kt−1, λ

k) .
•Pick arm kt = argminkNk

t−1 −
∑t
s=1w

k
s . (Cumulative

tracking)
•Observe sample Xt ∼ νkt. Update µ̂t.
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