Non-Asymptotic Pure Exploration by Solving Games

Topic: Pure Exploration

We want to answer a question about the
parameters of a stochastic bandit.

e X arms with unknown distribution parameters
(vector p of means).

e A query. Ex: is there an arm with mean p < 0 7
— correct answer at p is given by function i*( )

e At each stage, choose an arm and get an
observation from the arm.

e Decide when to stop and return an answer.
Goals:
e answer correctly with probability > 1 — 9.

argmax; 1 7 signs of all p* ?

e small sample complexity:
stop at 75 s.t. E,[7s] is small.

Jk, b < 07

Exploration as a Game

Lower Bound, with value of a game:
1 K

Tulms) 2 log(3)/ max | inf 32 whd(p®, \")

Optimal fixed sampling:
w* = argmax e n, infac (o S whd(k, A)

Previous work: Track and Stop

e my estimate ft; has answer YES.

e the optimal way to sample at f1; from the lower
bound is w;.

o | sample to track w; (4 forced exploration)

[s asymptotically optimal (but sometimes very
asymptotically).

Need argmax,en, ifxe—i(a,) Tiog W d(fy, A¥)

at every time step.

Relies on forced exploration, not adaptive to data.

Rémy Degenne, Wouter M. Koolen G and Pierre Ménard lreeia—

Solving bandit pure exploration
problems with games is

computationally efficient and has
optimal asymptotic sample
complexity.

Our Strategy

Emulate Nature with a second algorithm.
Get two algorithms playing against each other.

e Alg: my estimate ft; has answer YES.

e Nature: but here is A; with answer NO which

could have generated the same data with
relatively high probability.

o Alg: then I sample k; s.t. if u ~ fi; (+optimism),
[ get maximal evidence for g £ A;.

Why it works

As long as we do not stop:

1 K
log= > inf Y Nfd(u", \")
AE_'Zt k’zl

t K
~ inf >3 whd(pf, AY)
A\ S A

(stop rule)

(tracking)

(regret A)

> 3 whEaeg d(iF, N — R)

> max Y Exwg d(p”, \¥) — R} — Ry (regret k)

>t inf maxEyqd(p”, \¥) — O(V/1)

But p unknown — optimism to explore efficiently:.

Results

e Non-asymptotic sample complexity guarantees

e Asymptotically optimal

o Need only argminy gz, Si NFE d(fF, \F).
— better computational complexity:.

Up to 100x faster than T-and-S on best arm
identification.
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Figure 1:Track and Stop can fail, even for 6 = e .

algorithms are (provably) good.

Algorithm

Inputs:

e Algorithms A" and A*, full information
adversarial regret minimization algorithms.

e stopping threshold 3(t,d) =~ log lo%t, exploration
bonus f(t) ~ logt.

Algorithm:

e Sample each arm once and form estimate fty. For

t=K+1,...

o bor k € [K]a let [&fvﬁf] — {5 : Ntk—1d<:a1]f€—17€) < f(t_l)}°
(KL confidence intervals)

® et 1 = i*(ﬂt—l)-

e Stop and output 7 = ¢, if
infae—;, Sop NF d(fif_, \¥) > B(t,d). (GLRT Stopping
rule)

e Get w; and g; from Ai and Ag;.

o For k € [K], let UF = MaXee (of 341 Eang d(§, AF).
(Optimism)

o Feed A! the loss £(w) = — Y5 wrUF.

o Feed A the loss £}(q) = Exvg Xrq wid(ff 1, AY) .

o Pick arm k; = argmin, N, — > w” (Cumulative
tracking)

e Observe sample X; ~ v;,. Update fu,.
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