Robust Online Convex Optimization in the Presence of Outliers ,'

Tim van Erven B & Ao Sarah Sachs Bl o At Wouter M. Koolen G Wojciech Kottowski

1. Any OCO ALG with regret bound Br(G) if gradients have
length at most G
2. Top-k Filter: simple strategy to filter out large gradients
ALG must be able to adapt to gradient length G

Huber e-contamination model:

Theorem (At most k outliers). On linear losses, ALG + Top-k Filter
achieves price of robustness = O(G(S)k)

Distribution of interest

* fi(w) = f(w, &) where & ~ P
e Inlier risk: Riskp(w) = Ezup[f(w, )]

- Logistic regression without outlier
—— Logistic regression with outlier

X1

Rr(u,S) < Br(2G(S)) +4DG(S)(k+1)  foranyS: T —|S| < k.

——
Feed ALG gradients < 2G(S)

Corollary (Optimal Rate via Robust Online-to-Batch). Suppose
|V f(w,&)|| < Ga.s. when & ~ P isan inlier.

Then iterate average wt = % y-I' . w; of OGD + Top-k Filter achieves

Reasons for outliers:
 Naturally heavy-tailed data

* A small subset of malicious users trying to corrupt data stream
e Glitches in cheap sensors (increasingly common)

RiSkp(’u_)T) — 11121)51\/ RiSkp(u) =0 (DGG + DG\/ln(;/é))

Losses Minimax Robust Regret

General convex O(VT + k)

Heavily studied:
* In statistics [Tukey, 1959, Huber, 1964], stochastic optimization, etc.
* But not yet in Online Convex Optimization How can we even
express robustness?

with Pe-probability at least 1 — 9, for some k tuned for €,9, T.
General convex + i.i.d. :

O(In(T) + k)

Strongly convex

Which extra assumptions allow
sublinear dependence on number of outliers k?

Given convex domain W C R? with diameter(W) < D

1: fort=1,2,...,Tdo
2. Predict w; in W
3:  Observe convex loss function f; : YW — R with gradient g; =

V fr(wt)

4: end for

Top-k Filter:
 Maintain list £ of k + 1 largest gradient lengths seen so far
e Filter round if ||g¢|| > 2 min L;; otherwise pass to ALG
Main Ideas:
1. Never pass ALG gradients > 2G(S):

e [; contains at least 1 inlier, because at most k outliers
e Hence min £; < G(S)

2. Overhead for filtering is O (k)
e Every filtered round is also added to L;
 Therefore min £; (at least) doubles every k + 1 filtered
rounds
e Hence last k + 1 filtered rounds dominate

e |lg:|| < L|| X:|| forii.d. X} (e.g. hinge loss, logistic loss)
* Inliers S, are rounds s.t. || X¢|| less than p-quantile X,

Theorem (Sublinear Outlier Overhead). Suppose ALG has regret bound
Br(X), concave in T, if non-filtered X; have length at most X. Then ALG
+ p-Quantile Filter achieves

E max Rr(u,Sp)| < Byr(Xp)+0 (LDXP\/p(l —p)TInT 4 In(T)?
_ue -

p-Quantile Filter:

Definition. Robust regret: e Filter when || X}|| > lower-confidence bound on Xy

Rr(w,S) =) (fi(wt) — fi(u))

tesS

Similar in spirit to adaptive regret, which measures regret on un-
known interval of rounds, but techniques for adaptive break down
completely

Robust regret: measure regret only on (unknown) inlier rounds

Price of Robustness = Overhead over usual regret rate:
Challenges: e At most k adversarial outliers: O(k)

e Inliers S C {1,..., T} unknown (chosen by adversary) * p-Quantile outliers: O(+/p(1 — p)TIn(T) + In(T)?)
* Bounds cannot depend on outliers at all, but must scale with
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