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Extreme Outliers Can Break Learning
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Reasons for outliers:
• Naturally heavy-tailed data
• A small subset of malicious users trying to corrupt data stream
• Glitches in cheap sensors (increasingly common)

Heavily studied:
• In statistics [Tukey, 1959, Huber, 1964], stochastic optimization, etc.
• But not yet in Online Convex Optimization How can we even

express robustness?

Standard OCO setting
Given convex domainW ⊂ Rd with diameter(W) ≤ D

1: for t = 1, 2, . . . , T do
2: Predict wt inW
3: Observe convex loss function ft : W → R with gradient gt =

∇ ft(wt)

4: end for

Formalizing Robust OCO
Definition. Robust regret:

RT(u,S) = ∑
t∈S

(
ft(wt)− ft(u)

)
Similar in spirit to adaptive regret, which measures regret on un-
known interval of rounds, but techniques for adaptive break down
completely

Challenges:
• Inliers S ⊂ {1, . . . , T} unknown (chosen by adversary)
• Bounds cannot depend on outliers at all, but must scale with

G(S) = max
t∈S
‖gt‖.

Robustifying Any OCO Algorithm
1. Any OCO ALG with regret bound BT(G) if gradients have

length at most G
2. Top-k Filter: simple strategy to filter out large gradients

ALG must be able to adapt to gradient length G

Theorem (At most k outliers). On linear losses, ALG + Top-k Filter
achieves

RT(u,S) ≤ BT
(
2G(S)

)
+ 4DG(S)(k + 1) for any S : T − |S| ≤ k.

Feed ALG gradients ≤ 2G(S)

price of robustness = O(G(S)k)

Consequences

Losses Minimax Robust Regret

General convex O(
√

T + k)

General convex + i.i.d. "

Strongly convex O(ln(T) + k)

Efficient Filtering Approach
Top-k Filter:

• Maintain list Lt of k + 1 largest gradient lengths seen so far
• Filter round if ‖gt‖ > 2 minLt; otherwise pass to ALG

Main Ideas:
1. Never pass ALG gradients > 2G(S):

• Lt contains at least 1 inlier, because at most k outliers
• Hence minLt ≤ G(S)

2. Overhead for filtering is O(k)
• Every filtered round is also added to Lt
• Therefore minLt (at least) doubles every k + 1 filtered

rounds
• Hence last k + 1 filtered rounds dominate

Application: Robustified Online-to-Batch

Huber ε-contamination model: Pε = (1− ε)P + εQ

Distribution of interest

Outlier distribution

• ft(w) = f (w, ξ) where ξ ∼ Pε

• Inlier risk: RiskP(w) = Eξ∼P[ f (w, ξ)]

Corollary (Optimal Rate via Robust Online-to-Batch). Suppose
‖∇ f (w, ξ)‖ ≤ G a.s. when ξ ∼ P is an inlier.
Then iterate average w̄T = 1

T ∑T
t=1 wt of OGD + Top-k Filter achieves

RiskP(w̄T)− min
u∈W

RiskP(u) = O

(
DGε + DG

√
ln(1/δ)

T

)

with Pε-probability at least 1− δ, for some k tuned for ε, δ, T.

Quantile Outliers
Which extra assumptions allow

sublinear dependence on number of outliers k?

• ‖gt‖ ≤ L‖Xt‖ for i.i.d. Xt (e.g. hinge loss, logistic loss)
• Inliers Sp are rounds s.t. ‖Xt‖ less than p-quantile Xp

Theorem (Sublinear Outlier Overhead). Suppose ALG has regret bound
BT(X), concave in T, if non-filtered Xt have length at most X. Then ALG
+ p-Quantile Filter achieves

E

[
max
u∈W

RT(u,Sp)

]
≤ BpT(Xp)+O

(
LDXp

√
p(1− p)T ln T + ln(T)2

)
.

p-Quantile Filter:
• Filter when ‖Xt‖ ≥ lower-confidence bound on Xp

Summary
Robust regret: measure regret only on (unknown) inlier rounds

Price of Robustness = Overhead over usual regret rate:
• At most k adversarial outliers: O(k)
• p-Quantile outliers: O(

√
p(1− p)T ln(T) + ln(T)2)
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