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Motivating Questions
• Design of pure exploration algorithms for complex queries?

– Monte Carlo Tree Search

• Valid anytime confidence intervals for derived quantities?

– minimum

Stylised to Minimum Threshold Identification
Fix Bernoulli µ1, . . . , µK and threshold γ. Learn δ-correct

µ∗ := mini µi ≶ γ?

µ1 µ2 . . . µK

γ

For t = 1, . . . , τ
• Pick arm At
• See Xt ∼ µAt

Say m̂ ∈ {<,>}

Pµ(error) < δ

Lower Bound
Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016]
shows sample complexity for any δ-correct algorithm is at least

Eµ[τ] ≥ T∗(µ) ln 1
δ .

For our problem the characteristic time and oracle weights are

T∗(µ) =


1

d(µ∗, γ)
µ∗ < γ,

∑
a

1
d(µa, γ)

µ∗ > γ,
w∗a (µ) =


1a=a∗ µ∗ < γ,

1
d(µa ,γ)

∑j
1

d(µj ,γ)

µ∗ > γ.

Dichotomous Oracle Behaviour! Sampling Rule?
<

bi
as γ

>

γ

Real Algorithms Must Sample Every Arm
For symmetric algorithms we boost the lower bound on µ∗ < γ to

Eµ[τ] ≥
ln 1

δ

d(µ∗, γ)
+

C/K2

maxa d(µa, γ)

K

∑
a=1

(
1− d+(µa, γ)

d(µ∗, γ)

)
.

Sampling Rules
• Lower Confidence Bounds

Play At = arg mina LCBa(t)

• Thompson Sampling (Πt−1 is posterior after t− 1 rounds)

Sample θ ∼ Πt−1, then play At = arg mina θa.

•
NEW

Murphy Sampling condition on low minimum mean
Sample θ ∼ Πt−1 (·|mina θa < γ), then play At = arg mina θa.

Intuition for Murphy Sampling
• When µ∗ < γ conditioning is immaterial: θ ≈ µ and MS ≡ TS.

• When µ∗ > γ conditioning results in θ ≈ (µ1, . . . , γ, . . . , µK).
Index a lowered to γ with probability ∝ 1

d(µa ,γ) [Russo, 2016].

Main Result 1 : Murphy Sampling Rule
Theorem 1. Asymptotic optimality: Na(t)/t→ w∗a (µ) for all µ

Sampling rule < >

Thompson Sampling
Lower Confidence Bounds
Murphy Sampling

Lemma 2. Any anytime sampling strategy (At) ensuring Nt
t → w∗(µ)

and good stopping rule τδ guarantee lim supδ→0
τδ

ln 1
δ

≤ T∗(µ).

Numerical Results
µ = linspace(−1, 1, 10) ∈ H< µ = linspace(1/2, 1, 5) ∈ H>
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E[τδ] as a function of ln(1/δ). Throughout γ = 0.
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Sampling proportions vs oracle, δ = e−23 (l) and δ = e−7 (r).

(Non-Asymptotic) Adaptivity

Multiple low arms
identical or similar

⇒
{

conclude µ∗ < γ faster
tighter confidence interval for µ∗

?

Confidence Interval for Minimum
For LCB we adopt the obvious LCBmin(t) = mina LCBa(t).
For UCB we investigate three approaches:
• Box: Straightforward idea: UCBmin(t) = mina UCBa(t).
• GLRT: New sum-of-deviations confidence bound.
• Agg: Pool samples from multiple arms. Upper bound on any

average is upper bound on minimum. Biased but narrower.

Main Result 2: Deviation Inequalities
We identify threshold function T(x) = x + o(x) such that for every
fixed subset S ⊆ [K], w.h.p. ≥ 1− δ,

∀t :
[

NS (t)d+
(
µ̂S (t), min

a∈S
µa
)
− ln ln NS (t)

]+
≤ T

(
ln 1

δ

)
,

∀t : ∑
a∈S

[
Na(t)d+

(
µ̂a(t), min

a∈S
µa
)
− ln ln Na(t)

]+
≤ |S|T

(
ln 1

δ

|S|

)
.

Weighted union bound over subsets learns useful low-mean arms.

Numerical Results
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UCB for minimum: Agg dominates Box with 1, 3 and 10 low arms.
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Agg beats Box and GLRT in adapting to the number k of low arms.
Here µa ∈ {−1, 0} and γ = 0.

What’s Next
Deep trees. Adaptive tree expansion. Foundation for MCTS and RL.


