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Contribution
In online convex optimization and experts problems, second-order
regret bounds imply adaptive algorithms. Current methods require
knowledge of the Lipschitz constant; We efficiently learn it.

Abstract
To get good performance in Online Convex Optimization (OCO) you
need to select and tune your algorithm based on lots of techni-
cal stuff. The METAGRAD and SQUINT algorithms (OCO/experts)
promise to overcome this difficulty by maintaining multiple learn-
ing rates.

Guarantees: METAGRAD and SQUINT are robust to worst-case losses
and exploit stochastic data (Bernstein). METAGRAD automatically
adapts to curvature (strong-convexity, exp-concavity).

Limitation: METAGRAD and SQUINT require prior knowledge of a
bound on the gradients/losses; they fail otherwise.

OCO and Experts Settings
For online convex optimization:

1: for t = 1, 2, . . . , T do
2: Learner plays ût in convex body U ⊂ Rd

3: Environment reveals convex loss function `t : U → R

4: Learner incurs loss `t(ût), observes gradient gt = ∇`t(ût)

5: end for

Measure regret w.r.t. u ∈ U : RegretuT =
T

∑
t=1

`t(ût)−
T

∑
t=1

`t(u).

The experts setting is the special case with probability simplex domain
U = 4K and linear losses `t(u) := 〈u, lt〉, where lt ∈ RK.

State-of-the-Art Second-Order Bounds
Bounds (1) and (2) are achieved respectively by METAGRAD [Van Er-
ven and Koolen, 2016] and SQUINT [Koolen and Van Erven, 2015]
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under the (standard) assumption that ‖gt‖2 ≤ 1 and ‖lt‖∞ ≤ 1, for
all t ∈ [T] (i.e. known “Lipschitz bound”).
METAGRAD and SQUINT achieve these regrets by optimizing exp-
concave surrogate losses and maintaining multiple learning rates.

Towards Lipschitz Adaptivity via Clipping
Let (Bt) be the sequence of observed “Lipschitz” values:

Bt := B ∨max
t≤T

bt, where bt :=
{

D‖gt‖2, for OCO,
maxk〈ût − ek, lt〉, for Experts.

When no bound on (‖gt‖2) or (‖lt‖∞) is known in advance, we de-
velop METAGRAD+C and SQUINT+C which, respectively, observe
the sequence of clipped gradients and loss vectors [Cutkosky, 2019]:

ḡt := gt · Bt−1/Bt, l̄t := lt · Bt−1/Bt.

Theorem 1. With initial estimate B of the “Lipschitz” bound, META-
GRAD+C [resp. SQUINT+C] guarantees the regret bound (1) [resp. (2)]
with the following overhead multiplying Vu

T [resp. Vk
T]:

O
(

ln ln
√

∑T
t=1 b2

t
B

)
, for METAGRAD+C, (3)

O
(

ln ln BT
B

)
, for SQUINT+C. (4)

Limitation of the Clipping Trick
The overheads in (3) and (4) incurred by METAGRAD+C and
SQUINT+C make their respective regret bounds non-homogeneous:
scaling the losses/gradients by a factor c > 0 would not scale the
bound by the same factor.

There does not seem to be any safe a-priori way to tune B. If we

set it too small, the factors ln ln
(√

∑T
t=1 b2

t /B
)

and ln ln(BT−1/B) ex-
plode. If we set it too large—much larger than the effective range of
the data—then the lower-order contribution in the bounds blows up.

Lipschitz Adaptivity via a Novel Restart Trick
Consider the following algorithm where ALG is either META-
GRAD+C or SQUINT+C, taking as input parameter an initial scale B;

1: Play 0 for OCO or π for experts until the first time t = τ1 that
bt 6= 0;

2: Run ALG with input B = Bτ1 until the first time t = τ2 that
Bt

Bτ1

>
t

∑
s=1

bs

Bs
;

3: Set τ1 = τ2 and goto line 2;

Theorem 2. Let METAGRAD+L [resp. SQUINT+L] be the application of
the above algorithm with ALG being METAGRAD+C [resp. SQUINT+C].
Then METAGRAD+L [resp. SQUINT+L] guarantees the same regret as in
(3) [resp. (4)] with small constant overhead, and without prior knowledge
of a Lipschitz bound.

Idea Behind the Restart Trick

Regret Decomposition. Given a comparator u ∈ U , the regret can
be decomposed in tree parts (see picture above):

RegretuT = Ru
[1,τ1]

+ Ru
(τ1,τ2]

+ Ru
(τ2,T].

For the last two epochs, the regret bound for METAGRAD+C [resp.
SQUINT+C] applies, and thus Ru

(τ1,τ2]
and Ru

(τ2,T] are both of the order
of (1) [resp. (2)] with the additional overhead in (3) [resp. (4)], which
is at most ln ln T3/2 [resp. ln ln T] due to the restart condition.
The regret for the earlier epochs adds up to a lower order term:
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≤
τ1

∑
t=2

bt ≤ Bτ1

τ1

∑
t=1

bt

Bt
≤ Bτ1

τ2

∑
t=1

bt

Bt

∗
< Bτ2 ≤ BT ,

where
∗
< follows from the restart condition.

Efficient Handling of Domain Constraints
METAGRAD requires O(log T) many projections onto U in the Maha-
lanobis distance at each round: one projection per output of a slave
algorithm. We make use of a recent reduction for constrained opti-
mization due to Cutkosky and Orabona [2018] to incur only a single
Euclidean projection onto U while preserving the regret bound in (1).


