ﬂ U = Ag and linear losses {1 (u) == (u,l;), where I; € RX.
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Towards Lipschitz Adaptivity via Clipping
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Contribution 3

In online convex optimization and experts problems, second-order [{d Let (B;) be the sequence of observed “Lipschitz” values:
regret bounds imply adaptive algorithms. Current methods require h

knowledge of the Lipschitz constant; We efficiently learn it. Aﬂ B, .= BV maxb;, where b; = < Dl g:||2, for OCO,

@1 t<T X man<ﬁt — ey, ly), for Experts.
‘ <
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ldea Behind the Restart Trick

Last two epochs
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Abstract

To get good performance in Online Convex Optimization (OCO) you
need to select and tune your algorithm based on lots of techni-
cal stutf. The METAGRAD and SQUINT algorithms (OCO/experts)
promise to overcome this difficulty by maintaining multiple learn-
ing rates.

When no bound on (||g¢||2) or (||lt||e) is known in advance, we de-
velop METAGRAD+C and SQUINT+C which, respectively, observe
the sequence of clipped gradients and loss vectors [Cutkosky, 2019]:

-

gt =gt - Bi—1/ By, ly =1t - By1/Bt. Regret Decomposition. Given a comparator u € U, the regret can

Theorem 1. With initial estimate B of the “Lipschitz” bound, META- be decomposed in tree parts (see picture above):

GRAD+C [resp. SQUINT+C] guarantees the regret bound (1) [resp. (2)]
with the following overhead multiplying V¥ [resp. VX]:

Guarantees;: METAGRAD and SQUINT are robust to worst-case losses
and exploit stochastic data (Bernstein). METAGRAD automatically
adapts to curvature (strong-convexity, exp-concavity).

Regrety = Ry} 1+ R, )+ R, 7-

(Tl /TZ]

For the last two epochs, the regret bound for METAGRAD+C [resp.

SQUINT+C] applies, and thus R?Mz] and REI%Z,T] are both of the order

of (1) [resp. (2)] with the additional overhead in (3) [resp. (4)], which
is at most In In T3/2 [resp. InIn T] due to the restart condition.
The regret for the earlier epochs adds up to a lower order term:

Limitation: METAGRAD and SQUINT require prior knowledge of a
bound on the gradients/losses; they fail otherwise.

OB OO OMOMOMOMOMOMOMOMONMONMORNMON
OCO and Experts Settings DO O OO OOO. OO0 00000
Limitation of the Clipping Trick

The overheads in (3) and (4) incurred by METAGRAD+C and
SQUINT+C make their respective regret bounds non-homogeneous:
scaling the losses/gradients by a factor ¢ > 0 would not scale the
bound by the same factor. [

T
O (ln In \/25;1 bg) , for METAGRAD+C,

AT A AN A A
AT AT T T T T T T

for SQUINT+C.

> -

y T 71 bt 5 bt o
R(l,ﬁ] < t:Zzbt < BT1 =~ B_t < BT1 Z B_t BTZ < BT/

t=1

For online convex optimization:

1. fort=1,2,...,Tdo

S ° * e o
2:  Learner plays u; in convex body U/ C IR? where < follows from the restart condition.
3:  Environment reveals convex loss function ¢; : U — R

4:  Learner incurs loss ¢;(u;), observes gradient g = V4, (uy)

There does not seem to be any safe a-priori way to tune B. If we %V ANV AV AV IV IV LIV IV LY LU LY LY LY LY L LY O
set it too small, the factors In ln(\/Zle b%/B) and InIn(Br_1/B) ex- I Efficient Handling of Domain Constraints

plode. If we set it too large—much larger than the etfective range ot
the data—then the lower-order contribution in the bounds blows up.

5: end for

T T
Measure regret w.r.t. u € U: Regret? = ) li(u;) — Y U (u).
t=1 t=1
The experts setting is the special case with probability simplex domain

METAGRAD requires O(log T) many projections onto ¢/ in the Maha-
lanobis distance at each round: one projection per output of a slave
algorithm. We make use of a recent reduction for constrained opti-
mization due to Cutkosky and Orabona [2018] to incur only a single
Euclidean projection onto / while preserving the regret bound in (1).
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Lipschitz Adaptivity via a Novel Restart Trick
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State-of-the-Art Second-Order Bounds

Bounds (1) and (2) are achieved respectively by METAGRAD [Van Er-
ven and Koolen, 2016] and SQUINT [Koolen and Van Erven, 2015]

Consider the following algorithm where ALG is either META-
GRAD+C or SQUINT+C, taking as input parameter an initial scale B;

1: Play 0 for OCO or 7 for experts until the first time ¢t = 77 that

by # 0;
2. Run ALG with input B = B, until the first time t = 1 that

Bt bs .
B,
3: Set 71 = T and goto line 2;

T

OCO: O (\/V%"dlog T) Vu, Y (i —u,g1)2, (1)
t=1

ATAT AT

Experts: O (\/ Z&)[V’T‘] KL(pHﬂ)) Vo, (Tr — e, 11)?, (2)
o t=1

Theorem 2. Let METAGRAD+L [resp. SQUINT+L] be the application of
the above algorithm with ALG being METAGRAD+C [resp. SQUINT+C].
Then METAGRAD++L [resp. SQUINT+L] guarantees the same regret as in

(3) [resp. (4)] with small constant overhead, and without prior knowledge
of a Lipschitz bound.

OO, 0.0,0, 00,0000 00000000000 00000000

under the (standard) assumption that ||g¢|[> < 1 and ||l;||e < 1, for
all t € |T| (i.e. known “Lipschitz bound”).

METAGRAD and SQUINT achieve these regrets by optimizing exp-
concave surrogate losses and maintaining multiple learning rates. ,,

AT AT AT
AT AT AT AT AT AT AT
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