
Lipschitz Adaptivity with Multiple Learning Rates in Online LearningLipschitz Adaptivity with Multiple Learning Rates in Online Learning
Zakaria Mhammedi Wouter M. Koolen Tim van ErvenZakaria Mhammedi Wouter M. Koolen Tim van Erven

Contribution
In online convex optimization and experts problems, second-order
regret bounds imply adaptive algorithms. Current methods require
knowledge of the Lipschitz constant; We efficiently learn it.

Abstract
To get good performance in Online Convex Optimization (OCO) you
need to select and tune your algorithm based on lots of techni-
cal stuff. The METAGRAD and SQUINT algorithms (OCO/experts)
promise to overcome this difficulty by maintaining multiple learn-
ing rates.

Guarantees: METAGRAD and SQUINT are robust to worst-case losses
and exploit stochastic data (Bernstein). METAGRAD automatically
adapts to curvature (strong-convexity, exp-concavity).

Limitation: METAGRAD and SQUINT require prior knowledge of a
bound on the gradients/losses; they fail otherwise.

OCO and Experts Settings
For online convex optimization:

1: for t = 1, 2, . . . , T do
2: Learner plays ût in convex body U ⊂ Rd

3: Environment reveals convex loss function `t : U → R

4: Learner incurs loss `t(ût), observes gradient gt = ∇`t(ût)

5: end for

Measure regret w.r.t. u ∈ U : RegretuT =
T

∑
t=1

`t(ût)−
T

∑
t=1

`t(u).

The experts setting is the special case with probability simplex domain
U = 4K and linear losses `t(u) := 〈u, lt〉, where lt ∈ RK.

State-of-the-Art Second-Order Bounds
Bounds (1) and (2) are achieved respectively by METAGRAD [Van Er-
ven and Koolen, 2016] and SQUINT [Koolen and Van Erven, 2015]

OCO: O
(√

Vu
T d log T

)
∀u, Vu

T =
T

∑
t=1
〈ût − u, gt〉2, (1)

Experts: O

(√
E

ρ(k)
[Vk

T ]KL(ρ‖π)

)
∀ρ, Vk

T =
T

∑
t=1
〈ût − ek, lt〉2, (2)

under the (standard) assumption that ‖gt‖2 ≤ 1 and ‖lt‖∞ ≤ 1, for
all t ∈ [T] (i.e. known “Lipschitz bound”).
METAGRAD and SQUINT achieve these regrets by optimizing exp-
concave surrogate losses and maintaining multiple learning rates.

Towards Lipschitz Adaptivity via Clipping
Let (Bt) be the sequence of observed “Lipschitz” values:

Bt := B ∨max
t≤T

bt, where bt :=
{

D‖gt‖2, for OCO,
maxk〈ût − ek, lt〉, for Experts.

When no bound on (‖gt‖2) or (‖lt‖∞) is known in advance, we de-
velop METAGRAD+C and SQUINT+C which, respectively, observe
the sequence of clipped gradients and loss vectors [Cutkosky, 2019]:

ḡt := gt · Bt−1/Bt, l̄t := lt · Bt−1/Bt.

Theorem 1. With initial estimate B of the “Lipschitz” bound, META-
GRAD+C [resp. SQUINT+C] guarantees the regret bound (1) [resp. (2)]
with the following overhead multiplying Vu

T [resp. Vk
T]:

O
(

ln ln
√

∑T
t=1 b2

t
B

)
, for METAGRAD+C, (3)

O
(

ln ln BT
B

)
, for SQUINT+C. (4)

Limitation of the Clipping Trick
The overheads in (3) and (4) incurred by METAGRAD+C and
SQUINT+C make their respective regret bounds non-homogeneous:
scaling the losses/gradients by a factor c > 0 would not scale the
bound by the same factor.

There does not seem to be any safe a-priori way to tune B. If we

set it too small, the factors ln ln
(√

∑T
t=1 b2

t /B
)

and ln ln(BT−1/B) ex-
plode. If we set it too large—much larger than the effective range of
the data—then the lower-order contribution in the bounds blows up.

Lipschitz Adaptivity via a Novel Restart Trick
Consider the following algorithm where ALG is either META-
GRAD+C or SQUINT+C, taking as input parameter an initial scale B;

1: Play 0 for OCO or π for experts until the first time t = τ1 that
bt 6= 0;

2: Run ALG with input B = Bτ1 until the first time t = τ2 that
Bt

Bτ1

>
t

∑
s=1

bs

Bs
;

3: Set τ1 = τ2 and goto line 2;

Theorem 2. Let METAGRAD+L [resp. SQUINT+L] be the application of
the above algorithm with ALG being METAGRAD+C [resp. SQUINT+C].
Then METAGRAD+L [resp. SQUINT+L] guarantees the same regret as in
(3) [resp. (4)] with small constant overhead, and without prior knowledge
of a Lipschitz bound.

Idea Behind the Restart Trick

Regret Decomposition. Given a comparator u ∈ U , the regret can
be decomposed in tree parts (see picture above):

RegretuT = Ru
[1,τ1]

+ Ru
(τ1,τ2]

+ Ru
(τ2,T].

For the last two epochs, the regret bound for METAGRAD+C [resp.
SQUINT+C] applies, and thus Ru

(τ1,τ2]
and Ru

(τ2,T] are both of the order
of (1) [resp. (2)] with the additional overhead in (3) [resp. (4)], which
is at most ln ln T3/2 [resp. ln ln T] due to the restart condition.
The regret for the earlier epochs adds up to a lower order term:

Ru
(1,τ1]

≤
τ1

∑
t=2

bt ≤ Bτ1

τ1

∑
t=1

bt

Bt
≤ Bτ1

τ2

∑
t=1

bt

Bt

∗
< Bτ2 ≤ BT ,

where
∗
< follows from the restart condition.

Efficient Handling of Domain Constraints
METAGRAD requires O(log T) many projections onto U in the Maha-
lanobis distance at each round: one projection per output of a slave
algorithm. We make use of a recent reduction for constrained opti-
mization due to Cutkosky and Orabona [2018] to incur only a single
Euclidean projection onto U while preserving the regret bound in (1).


