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Prolusion

Paul Vitányi’s 2003 Kolmogorov complexity lecture included a computer exer-
cise in which a polynomial relation had to be learnt from samples.1 The following
data were provided: a sequence of pairs of numbers (h1, d1), (h2, d2), . . . , (hn, dn),
supposedly noisy measurements of a classical urn, hi being the height from the
floor and di being the diameter of the urn at the height hi. The goal was to
infer a polynomial that represented the relation between height and diameter.
For a given degree, this can easily be done using linear algebra. The crux of the
exercise was finding the best degree. An example is shown in Figure 1.

To me, learning from given data is only part of a more general concept of
learning, and I started to wonder whether the techniques that I learnt dur-
ing my studies could be adapted to an interactive setting, allowing the learner
to perform experiments. For example, when learning polynomials, the learner
could be allowed to choose a point, and she would then receive the value of the
polynomial at that point.

For this thesis, I started working on the interactive polynomial learning
problem, but it turned out to be much too hard. I then devised the balance scale
problem (see Chapter 4), a toy problem that conserves the important features of
the polynomial learning problem: it is interactive, probabilistic, model-based,
but finite. I had by then developed a slight aversion to subjective Bayesian
methods, for my initial work on the polynomial learning problem suggested
that they are not robust. It seemed that a subjective Bayesian learner can be
tricked into assigning high posterior probability to a certain proposition while

Figure 1 Urn example

1The exercise by Troy Lee is still available online at http://www.lri.fr/~lee/final.html.
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this proposition is false, and additionally, great confidence in this proposition
leads to great confidence in the usefulness of experiments that in fact do not
help to determine that this proposition is false.

With this in mind, I decided to perform a worst-case analysis of the balance
scale problem, and of similar problems in general. This problem naturally de-
composed into the truth-finding problem, where we want to find the true model
from given data, and the experiment-design problem, where experiments have
to be selected, whose outcomes subsequently serve as the data for truth finding.

I have yet to solve the balance scale problem completely. But I have already
learned and discovered much more than I could initially imagine.

I hope that this thesis will provide inspiration to others.

Wouter Koolen-Wijkstra

Amsterdam
23rd November, 2006
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Chapter 1

Introduction

Science progresses by the performing of
experiments to evaluate hypotheses.

1.1 Problem statement

This thesis is motivated by two important and interesting questions:

Question 1. How can data be used to learn about reality?

Question 2. How can experiments be used to accelerate learning?

These questions are important, because their answers should provide a solid
foundation for rational, e.g. scientific, learning. The answers will most likely
also provide new insights into natural, e.g. human, learning. These questions
are interesting, because they have not yet been answered satisfactorily, in spite of
their importance. Existing approaches require prior knowledge of a specific kind,
focus on the learning of predictors, and are mostly analysed in non-sequential
settings.

In this thesis, we formalise the first question in the framework of decision
theory as the Nature versus Learner truth-finding game. This game focuses
on finding the true model instead of on prediction. We perform a worst-case
analysis of this game, requiring no prior knowledge. We provide the solution to
the truth-finding game in the form of optimal strategies for both players, and
interpret the value of the game as a measure of certainty.

We formalise the second question as the Nature versus Experimenter experi-
mentation game: a straightforward generalisation of the truth-finding game that
includes sequential experimentation. We also solve this game, and compare our
solution to that of Bayesian experiment design.

Overview This introduction is structured as follows. We describe the compo-
nents of the learning setting in §1.2, and introduce our two running examples.
In §2.6.1 we explain how information can be quantified. This allows us to mea-
sure how much has been learned. Then in §1.3, we put forward the truth-finding
problem: its interpretation as a game, and the first detailed example. In §1.4 we
extend the truth-finding game with experiments, and give the second detailed

1



1.2. Basic terminology Chapter 1. Introduction

example. We summarise the contribution of this thesis in §1.5. We conclude
with a list of related work, and words of gratitude.

1.2 Basic terminology

Experiment An experiment is a two-stage act. First, one influences the state
of the world in a controlled way, for example by injecting a mouse with a certain
dose of elixir. The action that is undertaken in this first stage is called the input
of the experiment. Second, one observes the value of a predetermined quantity,
for example the lifespan of said mouse measured in days. The value obtained
in this second stage is called the outcome of the experiment. Note that in
controlled experiments, for example clinical trials, one separately observes the
outcome that occurs when no influence is exerted. In this thesis, we do not
assume that there is such a special null input, but always compare the outcomes
of several experiments. A series of experiments yields data, the concatenation
of successive input/outcome pairs.

Hypothesis A hypothesis provides an explanation for a phenomenon; it re-
lates that what one can influence to that what one can observe. A deterministic
hypothesis predicts a single outcome for each possible input. A probabilistic
hypothesis assigns a likelihood to each outcome for each possible input. Deter-
ministic hypotheses are mathematically represented as functions; probabilistic
hypotheses are represented as (conditional) probability distributions. The latter,
more general type, will be used in this thesis, as we are interested in modelling
phenomena that involve chance. Hypotheses of both types abound in science.
We can regard science as the prime application of both learning from data and
experimental learning.

In practice, hypotheses are used for different purposes:

• to describe regularities in past experiments,

• to predict the outcome of future experiments, and

• to explain, i.e. formally specify, a data-generating process.

In this thesis, we focus on the third interpretation.

Evaluation Experiments provide the empirical basis for the evaluation of hy-
potheses. A deterministic hypothesis can (theoretically) be disqualified on the
basis of a single contradictory outcome. It is generally impossible to reject
probabilistic hypotheses, but they lose credibility when they predict poorly, i.e.,
they assign low probability to subsequently observed outcomes of experiments.
In the absence of prior knowledge of the generating process, there is no abso-
lute quantitative scale to judge prediction quality, hence we can only evaluate
prediction quality in comparison to the prediction quality of other hypotheses.

Model A collection of similar probabilistic hypotheses is called a model. A
model has no direct relation to the phenomena that its member hypotheses ex-
plain; it is a cognitive device, created by the learner to structure the learning
problem at hand. Models as such are not hypotheses in our strict sense; they

2



Chapter 1. Introduction 1.2. Basic terminology

provide no means to combine the specific predictions made by the member hy-
potheses into a single prediction. There are ways to achieve such prediction
though, for instance by using a Bayesian universal model. This is a model en-
dowed with weights for each member hypothesis. A Bayesian universal model
can be translated into a hypothesis, by taking the weighted average of the mem-
ber hypotheses.

A collection of models is called competing if no pair of models shares a
common hypothesis. As an example, consider the following scenarios, which are
summarised in Table 1.1.

Scenario 1 (Biased coin). A coiner has just minted a prototype coin showing
the new queen’s face. The new queen is rather gourmand, so he wonders whether
the coin is loaded. To find out, he can perform experiments by flipping the coin,
and observing the side that turns up, either heads or tails. Hypotheses are of
the form: the probability that heads turn up is θ, where θ is a number between
0 and 1. Models are, for example, the coin is fair (ex. model 1), which is a
singleton set, or the coin favours heads (ex. model 2), which is an uncountable
set of hypotheses.

Scenario 2 (Anvil drop). Galileo, author of the definitive guide to Earth’s
gravity, established that sufficiently heavy objects, when dropped from equal
height, hit the ground simultaneously. Now he wants to find out how falling
time relates to height. To this end, he has brought an anvil and a stopwatch
to the tower of Pisa. He performs an experiment by climbing up to some floor
at height h, dropping the anvil, and measuring the amount of time t it takes
the anvil to hit the pavement. His hypotheses relate t to h, for example via
the equation h ≈ 4t2. (We write ≈ to signify that we use a fixed zero-mean
noise model. In this case, t =

√
h/4 + Z, where Z is a normally distributed

random variable with mean zero. The outcome of an experiment, the measured
time t, is noisy; it cannot be obtained exactly due to limited reaction speed and
precision. We approximate the combined influence of such small errors with a
normal distribution. Thus, again we use probabilistic hypotheses.)

Models are, for example, linear gravity (ex. model 1) or quadratic gravity
(ex. model 2).

Reality, worlds In this thesis, we use the word reality in a technical sense.
It designates a data-generating process, which we cannot identify, but on which
we can run experiments. We regard the procedural details of the execution of
the experiment as part of reality itself. For example, in Scenario 2, reality is
the process that generates a stopwatch reading when provided with a height.

Table 1.1 Example scenarios with hypotheses and models.

Scenario Biased coin Anvil drop

Input none height h
Outcome H(eads) or T(ails) time t with Gaussian noise
Ex. hypothesis P (H) = 0.6 h ≈ 4t2

Ex. model 1
{
P (H) = 0.5

} {
h ≈ αt | α ∈ [1, 10]

}

Ex. model 2
{
P (H) = θ | θ ∈ (0.5, 1]

} {
h ≈ αt2 | α ∈ [1, 10]

}

3



1.3. Selection tasks Chapter 1. Introduction

Reality is not necessarily a probability distribution, although we will require
this assumption later when we turn to truth finding.

Reality, which we will also call the state of nature, is unknown to us. We can,
however, consider a collection of candidate explanations of reality: alternative
states of nature that we cannot yet distinguish from the actual state. We adopt
the nomenclature of modal reasoning, and call such alternative states possible
worlds. We refer to the current state, reality, as the actual world. Again, in
truth finding, we assume that the actual world is a possible world.

Overfitting Intuitively, a hypothesis over-fits if it describes past outcomes
well, but predicts future outcomes poorly. Such a hypothesis is too specific; it
describes the noise instead of the regularity in the past outcomes, hence it misses
the general pattern. See Figure 1.1 for a graphical example. Ten data-points
were generated from the true dotted curve, with Gaussian noise added. The
best fitting polynomials of degree 1, 3 and 9 are shown. The under-fitting curve
(a) describes the sampled points poorly, and explains the true curve poorly. The
over-fitting curve (c) describes the sampled points perfectly, but explains the true
curve extremely badly. Curve (b) strikes a good balance between descriptive and
explanatory quality.

The statistical literature, e.g. [Mit97], is full of theorems showing that to get
good predictive quality, you need to take the hypothesis that optimises some
trade-off between complexity and goodness of fit.

1.3 Selection tasks

Learning amounts to finding regularity in data. An elegant formalisation of this
idea is given by the theory of Kolmogorov complexity, where all computable
regularities are considered. See [LV93] for an introduction to the field. The
Kolmogorov complexity itself is not computable.

To obtain a computable notion of regularity, one must restrict the class of
regularities under consideration. Such restrictions lie at the heart of minimum
description length (MDL) methods, see [GMP05]. As in MDL, we use models
to explicitly state which regularities are considered.

The following question is a more precise formulation of Question 1:

Figure 1.1 Example of fit
(a) Degree 1: under-fit

 

 

true curve
sampled points
approximation

(b) Degree 3: good fit

 

 

true curve
sampled points
approximation

(c) Degree 9: over-fit

 

 

true curve
sampled points
approximation
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Question 3. Given a sequence of data obtained from reality and a list of reg-
ularities, how can we infer the best explanation for reality on the list, i.e. learn
something about it?

We list three answers to Question 3, that differ in the precise interpretation of
“best explanation”: hypothesis selection, model selection, and truth finding. But
first we make the following observation about selection methods on probabilistic
objects in general.

Probabilistic humility The general principle

probabilities in ⇒ probabilities out (PIPO)

states that, once a problem has been formalised in probability theory, then
reasoning within probability theory can only yield the probability of new events.
The goal of model selection is to find the best model. By PIPO, probability
theory can only give us a probability distribution on the candidate models. We
need an additional criterion, outside of probability theory, to judge the quality
of such distributions. The same holds for hypothesis selection and truth finding.

Hypothesis selection The hypothesis-selection problem is stated as follows:
given a collection of hypotheses and data obtained from reality, find the hypothe-
sis that explains reality best. Of course, one cannot evaluate directly how well a
hypothesis explains reality, one can only evaluate how well it describes the data.
To guard against over-fitting, one must select a hypothesis that strikes a balance
between expressiveness and simplicity. This can be achieved by (1) adopting a
measure of complexity for hypotheses, and (2) penalising hypotheses by their
complexity. For example, in Figure 1.1, we penalise polynomials according to
their order. This ensures that we prefer (b) over (c).

The hypothesis-selection problem between two hypotheses is called hypoth-
esis testing. To obtain a true selection, beyond PIPO, one uses a significance
level as a selection threshold.

Model selection The model-selection problem is the following: given a collec-
tion of models and data obtained from reality, find the model that explains reality
best. This problem is often solved by reducing it to the hypothesis-selection prob-
lem using universal codes. A universal code for a model corresponds to a single
hypothesis, composed of a weighted average over the partaking hypotheses. Two
well-known approaches are Bayesian and MDL model selection, see [GMP05].

Truth finding The truth-finding problem is the following: given a collection
of competing models and data obtained from reality, find the true model. We
regard the hypotheses in the models as possible worlds, and assume that one of
them is reality. The model that contains reality is called the true model, and
we want to obtain as much information about its identity as possible. Selecting
a single model with certainty is generally impossible, because we are working
with probabilistic hypotheses. We allow a more general answer: a probability
distribution on models, which expresses any remaining uncertainty about the
true model. The performance of such a distribution is evaluated by the well-
known log loss measure. The truth-finding problem is discussed in Chapter 3.

5



1.3. Selection tasks Chapter 1. Introduction

Quantifying information The truth-finding problem is different from the
preceding two problems, for it makes the additional assumption that reality is
in one of the models. The availability of a true model allows a natural measure of
error or loss, namely the amount of information that we, the learner, lack about
this true model. To measure this amount, consider the following hypothetical
situation. Suppose that there is a helpful external observer that knows which
model is true. This observer sends us a message (e.g. an SMS), to tell us which
model is true. The more information we already possess about the true model,
the shorter this message needs be. We equate the amount of information that
we lack about the true model with the length of the shortest message that will
make us totally informed about the true model.

Log loss The above sending of messages is formalised in information theory
using codes. Codes allow us to measure message lengths in bits. Throughout
this thesis, we will use probability distributions as mathematical generalisations
of codes. A probability distribution can be regarded as a code with idealised
(non-integer) code-lengths. This correspondence will be explained in more detail
in §2.6.1. Let P be the distribution on models that represents our uncertainty
about the true model, i.e. that we use as a code, and let M∗ be the true model.
Then the amount of information that we lack about M∗, denoted Llog and called
the log loss, is given by

Llog(P,M∗) = − log P (M∗). (1.1)

Minimising the log loss is equivalent to maximising the probability that we
assign to the true model. Of course, we — the learner — cannot determine the
log loss ourselves, because we do not know the true model.

We stress that the distribution P on models that is learned can always be
interpreted as a code. Only in special situations can the probabilities that P
assigns to the models be interpreted as their relative frequencies of occurrence,
or as the learner’s subjective degree of belief in their truth. We describe these
situations in §3.7.4.

Truth-finding game To analyse the truth-finding problem with log loss, we
formulate it as a game. The truth-finding game, a strictly competitive game with
chance moves, is played between the players Learner, Chance and Nature. The
arena of the truth-finding game is a set of competing models. Nature picks the
world that generates the data from one of the models, Chance actually generates
the data, and Learner tries to gain as much information as possible about the
true model using the data. The entire game is shown in Protocol 1.1.

Protocol 1.1 The truth-finding game

Arena: Competing models M = {M1,M2 . . .}.
Require: Number of outcomes n.
1: Nature covertly chooses a hypothesis θ∗. Say θ∗ is in model M∗.
2: Chance samples a sequence of outcomes y1, y2 . . . yn from θ∗.
3: Learner expresses his belief as a probability distribution P on models.

Loss: Learner suffers -log P (M∗).
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Example 1.1 (Biased coin). The following is a run of the truth-finding game
for Scenario 1. We start with two models: fair coin, and coin favours heads.
Formally, we have M = {M1,M2}, where

M1 =
{
P (H) = 0.5

}
fair coin

M2 =
{
P (H) ∈ [0.6, 1]

}
coin favours heads

We have slightly altered the definition of the second model in this example for
illustrative purposes. This version of the biased coin scenario will be called
Reduced Biased Coin in Chapter 3, where we continue this example. Say n, the
number of coin flips we will perform, is fourteen. Now Nature starts by choosing
a world from either of the models. Say she picks the coin with bias 0.6, from
the second model. This means that, for the rest of this game, model two is the
true model. (This simple strategy for Nature is not optimal. The best (minimax
optimal) strategy is given in Chapter 3.) Then Chance generates 14 outcomes
of the coin with bias 0.6. Say these are the outcomes:

H, T, H, H, H, T, T, T, H, H, H, T, T, H

Finally, Learner must express his belief about the true model as a probability
distribution on models. He does not know which model is true, but he has seen
the outcomes. Disregarding the order of the outcomes, he could just count:
6 × T and 8 × H . Now, following the worst-case-optimal strategy described in
Chapter 3, he produces the following probability distribution on models:

P (M1) = 0.4701 P (M2) = 0.5299

Note that Learner only slightly favours the second model. This a cautious choice,
because the data are not very informative. Then the true model M2 is revealed,
and the information that Learner lacks about this model is computed using the
log loss. It is given by − logP (M2) = 0.9162. Our analysis will show that
the expected loss for Learner, using the worst-case-optimal strategy is 0.9040.
The current loss is higher, but this is not due to Nature, but to Chance. The
outcome, which Chance generated at random, is just not very informative.

Worst-case-optimal strategy In this thesis we analyse the truth-finding
game from a worst-case perspective. That is, we search for a learning procedure,
a strategy, that constructs a probability distribution on models from observa-
tions, such that, using this procedure, we gain as much information about the
true model as possible, in the worst state of nature for this particular proce-
dure. The motivation for this approach is that it gives the best performance
guarantees if we are not prepared to make further assumptions.

To evaluate a strategy, we compute its risk. This is the mean loss that the
learner obtains using this strategy, where the average is taken over all Chance’s
moves. The risk of a strategy does depend on Nature’s move, but no longer on
Chance. Then, taking the worst-case-optimal strategy for Learner, we eliminate
dependence on Nature. Therefore, the worst-case-optimal strategy and its risk
require no assumptions about Nature. One of the models has to be true, but, in
our worst-case analysis, it is immaterial which one.

7
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Worst-case belief Worst-case analysis is quite different from Bayesian anal-
ysis. In the latter, it is assumed that the learner can always construct a proba-
bility distribution on possible worlds, expressing his prior uncertainty about the
actual world. The crucial difference is that the Bayesian learner uses this dis-
tribution for two purposes. First, he selects the act that is optimal with respect
to this distribution. Second, he assesses his own performance with respect to
this distribution, using it as though it were true. We think that this approach
is essentially circular.

It is interesting that our worst-case analysis also constructs a probability
distribution on possible worlds. This probability distribution can be interpreted
as the prior belief that the learner should have about the true model, in the
sense that it is a worst-case-optimal mixed strategy for Nature. For Learner,
believing this distribution is not problematic; if it is not true, then Nature does
not play optimally, and the incurred risk for Learner can only decrease. The
constructed probability distribution on models depends heavily on the structure
of the models, and is often particularly non-uniform. This directly contradicts
Bayesian philosophy, which, taken in a weak form, prescribes the assumption of
a smooth, fairly uniform, distribution, in the absence of specific prior knowledge.

1.4 Experiments

We now address the task of truth finding when we can perform experiments.

Experiment design The experiment-design problem is the following: given
a collection of competing models, perform the experiments that, in the end, yield
most information about the true model. We allow experiments to be chosen
sequentially, this means that we can choose the next experiment based on the
data obtained in all previous experiments. Example 1.2 is provided below as an
illustration.

Previously, hypotheses were probability distributions on outcomes. In exper-
iment design, hypotheses are conditional probability distributions on outcomes
given input. Here, the input is the experiment selected by the learner. The true
hypothesis fixes the way experiments work, by dictating the probability of each
outcome for each input.

The experiment-design problem can be seen as experiment selection followed
by truth finding. The data used for truth finding are the outcomes of the
selected experiments. The task of experiment design amounts to choosing an
experimentation strategy to maximise the amount of information that truth
finding obtains.

To analyse the experiment-design problem, we translate it into a game.

Experimentation game The experimentation game, a strictly competitive
game with chance moves, is played between the players Experimenter, Chance

and Nature. The experimentation game extends the truth-finding game with
experiments. This extra ability for Learner licenses his new name: Experimenter.
A run of the game proceeds as follows. Nature initially picks the world in
which all experiments take place. Then Experimenter chooses an experiment, and
Chance responds by generating an outcome according to the actual world and
the chosen experiment. These two steps are repeated a predetermined number of

8
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times, allowing Experimenter to base his choice on previous outcomes. Finally,
Experimenter is evaluated as in the truth-finding game. He must provide a
probability distribution on models, and suffers the log loss, that is, the amount of
information this distribution lacks about the true model. The experimentation
game is summarised in Protocol 1.2.

Protocol 1.2 The experimentation game

Arena: Competing models M = {M1,M2, . . .}.
Require: Number of experiments n.
1: Nature covertly chooses a hypothesis θ∗. Say θ∗ is in model M∗.
2: for n turns do

3: Experimenter chooses an experiment input ξ.
4: Chance generates an outcome as predicted by θ∗ on ξ.
5: end for

6: Experimenter expresses his belief as a probability distribution P on models.
Loss: Experimenter suffers − logP (M∗).

Example 1.2 (Anvil drop). The following is a run of the experimentation game
for Scenario 2. We start with two models: linear gravity and quadratic gravity.
Formally, we have M = {M1,M2}, where

M1 =
{
h ≈ αt | α ∈ [1, 10]

}
linear gravity

M2 =
{
h ≈ αt2 | α ∈ [1, 10]

}
quadratic gravity

The tower of Pisa has six galleries. Correcting for inclination, the first one is
located at the height of four metres above the tower base. Each next one adds
another four metres of height. Experimenter, Galileo, drops an anvil by gently
pushing it over the edge of a loggia.

First Nature chooses the actual world; suppose she chooses h ≈ 5t2. More
precisely, this means t ∼

√
h/5 + ǫ, where ǫ is Gaussian noise with variance

0.1. This fixes quadratic gravity as the true model for the rest of the game.
Historical fiction1 tells us that Galileo dropped two heavy objects from the
tower. We adopt this number of experiments. Say the first anvil is dropped
from the topmost gallery, h = 6 · 4 = 24. Then Chance generates an outcome
according to h ≈ 5t2, say t = 2.2 seconds. Now Experimenter can choose another
experiment, say he drops the second anvil from h = 3 · 4 = 12, and Chance

generates t = 1.6.
It now remains to perform the evaluation step, which continues exactly

as in the truth-finding game. The data, the concatenation of successive in-
put/outcome pairs, are

〈24, 2.2〉 , 〈12, 1.6〉

1This story, although reported by Galileo’s own student, is widely considered to be a legend
according to [Wik06].
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1.5 Contribution of the thesis

Truth-finding2 is, to the best of our knowledge, a new way to formalise the
learning problem. Its prime motivations are the following.

• Models are the interesting level of abstraction for learning.

• Worst-case analysis is a good answer to the absence of prior information,
as it provides rigorous bounds without further assumptions.

We provide the worst-case solution of the truth-finding game, in the form of a
procedure to find the worst-case-optimal strategy. We give an algorithm, and
prove that it finds the worst case optimal strategy. As already described, this
procedure constructs a probability distribution on possible worlds, and then acts
optimally with respect to this distribution. One might say that this probability
distribution is objective, as it is induced by the structure of the game, and not
based on the learner’s judgement.

The second half of this thesis is devoted to experiment design. We use
truth finding as a building block, and hence adopt its motivations. We add the
following

• Experiments are performed sequentially.

There is considerable literature on Bayesian experiment design, but most of the
literature covers a setting in which all experiments are performed simultaneously.
See [CV95] for an overview. The sequential setting is, of course, more powerful.

There also literature on frequentist experiment design, for example [Puk93].
Also here, there is a focus on performing experiments simultaneously. Other
than that, it is not clear how this approach is related.

Theorems 2.30, 2.31 and 3.41 are more minor contributions. The last the-
orem is both interesting and simple to prove; we suspect it is not new, but we
could not find a published statement of this result.

Related work

Information theory is covered in [CT90], game theory in [Bin91]. Decision theory
is covered in the classical [Fer67]. Non-Bayesian experiment design is covered
in [Puk93], which focuses on linear models. [CV95] reviews the current state of
Bayesian experiment design, while [SW00] compares Bayesian experiment design
to Maximum Entropy Selection. The relation between Bayes acts and the Max-
imum Entropy Principle is treated in detail in [GD04]. Minimum Description
Length model selection is covered in [GMP05].

Organisation of the thesis

Chapter 2 provides notions and results that will be used later. It also serves
to introduce our notation and conventions. Among other things, Chapter 2

2The term truth finding already has a legal meaning, and it has also been defined as a desirable
quality of learning frameworks. Our usage refers to the interpretation/definition that we
present in the first half of this thesis.
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introduces the relevant strategic game theory that allows us to analyse and
solve the games in later chapters.

Chapter 3 addresses the problem of truth finding. It provides an analysis
and solution of the truth-finding game. It also addresses the problem that there
often is no analytical solution, and provides a numerical solution to a simple
example.

Experiment design is covered in Chapter 4, where we analyse and solve the
experimentation game. Chapter 5 concludes and provides a list of directions for
future research.
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Chapter 2

Preliminaries

This chapter covers the notions and results needed for the development of the
theory of truth finding and experiment design in Chapters 3 and 4. This chapter
does not contain new material, with the exception of §2.6.3; it is intended as
a reference, and serves to introduce notation. Readers that are familiar with
some of the areas of research described herein may skip these without difficulty,
because standard notation has been used wherever possible.

2.1 General notation

We denote by N and R the sets of natural and real numbers. Both contain 0. The
extended real numbers are defined by R := [−∞,∞] = R∪ {−∞,∞}, and they
are endowed with the intuitive order and the corresponding order topology. R+

is the set of non-negative real numbers. R++ is the set of positive real numbers.
As usual, Rn is the n-fold Cartesian product of R. We use log for the binary
logarithm. It is convenient to regard log as a function from R+ to R, by defining
log 0 := −∞.

2.2 Set theory

Notation 2.1. Let Φ and Ω be sets. We denote the power set of Ω by ℘(Ω).
The identity function on Ω is denoted by 1Ω. We denote by [Ω → Φ] the set of
all functions from Ω to Φ. We abbreviate f ∈ [Ω → Φ] to f : Ω → Φ. We write
f : Ω ։ Φ if f is a surjective function from Ω to Φ.

Notation 2.2. Let Φ be a set, I a well-ordered set of indices, and Ωi ⊆ Φ for
each i ∈ I, with duplicates allowed. We denote the function i 7→ Ωi by 〈Ωi〉i∈I .
We call a function of this form an I-family or an I-sequence.

Definition 2.3. Let Φ be a set. We denote by Φ∗ and Φ<ω the set of all finite
sequences over Φ. We denote by Φω the set of all infinite sequences over Φ.

Definition 2.4. Let f : Φ × Ω → Ψ. For all x ∈ Φ, we denote by f(x, ·) :={
(y, f(x, y)) | y ∈ Ω

}
. Clearly, f(x, ·) : Ω → Ψ. The function f(x, ·), viewed as

a function of x, is called the Schönfinkelisation or Currying of f . We analogously
define f(·, y).
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Definition 2.5. Let Ω be a set. A set Φ ⊆ ℘(Ω) is called a partition of Ω if

1.
⋃

Φ = Ω. (Φ covers Ω.)

2. ∅ 6∈ Φ.

3. Ψ ∩ Θ = ∅ for all different Ψ, Θ ∈ Φ. (The elements of Φ are pairwise
disjoint.)

2.3 Linear algebra

Whenever n is clear from the context, we denote by 0 and 1 the zero and unity
vectors in Rn, i.e. the vectors that have all entries set to either zero or one. For
1 ≤ i ≤ n, ei is the unit vector of dimension i. We denote the transpose of a
vector p by pT .

Definition 2.6. The unit n-simplex is the set given by

∆n :=
{
p ∈ Rn

+ | pT1 = 1
}

.

It is also called the standard n-simplex or probability n-simplex. One can equiv-
alently define ∆n as the convex hull of {e1, . . . , en}. Note that we number the
unit simplices by the number of partaking unit vectors, whereas some other
authors number by dimension (which is n− 1), or equivalently include the zero
vector in the convex hull definition.

Each discrete probability distribution on a set of n outcomes can be repre-
sented by a point in ∆n and vice versa. The unit 2- and 3-simplices are shown
in Figure 2.1.

2.4 Convex analysis

All sets in this section are subsets of Rn. A set C is convex if it is closed under
linear interpolation. We denote by conv(Ω) the convex hull of the set Ω, i.e.
the intersection of all convex sets that contain Ω. The convex hull operation
preserves openness, closedness and boundedness, hence also compactness.

The following results can be found in a standard textbook on convex opti-
misation, for example in [BV04].

Figure 2.1 Examples of unit simplices
(a) unit 2-simplex: a line segment in
the plane
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(b) unit 3-simplex: an equilateral tri-
angle in 3-space
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Theorem 2.7 (Supporting Hyperplane Theorem). For every convex set C, and
point x on the border of C, there is a hyperplane P through x, such that C is
contained in one of the half-spaces of P .

Theorem 2.8 (Separating Hyperplane Theorem). Let H and K be convex sets
in Rn with disjoint interior. Then there exists a hyperplane

{
x | aT x = b

}
that

separates H and K.

Theorem 2.9. If f : R2 → R is convex in (x, y), and C a convex non-empty
set, then the function

g(x) = inf
y∈C

f(x, y)

is convex in x, provided g(x) > −∞ for some x.

2.5 Probability theory

Probability theory deals with probabilities of events, that is, sets of outcomes.
A rigid formalisation of probability theory using measure theory is given in
Appendix A. For the current exposition, it suffices to define a probability dis-
tribution as a function that assigns probabilities, i.e. numbers from [0, 1], to
events, obeying certain conditions. We abbreviate probability distribution to
distribution whenever convenient.

Throughout this thesis, we will use three standard types of event sets, de-
pending on the type of the set of outcomes X as follows:

• If X is finite, we use the events ℘(X ).

• If X ⊆ R, we use the events Bor(R). This is the Borel σ-algebra on R,
i.e. the smallest set of events that contains all open sets of R, and that is
closed under complements and countable unions. If X ⊆ Rn, we use the
events Bor(Rn).

• If X is a set distributions on a finite set of size n, we identify it with
∆n ⊂ Rn, and use the Borel σ-algebra on the latter.

Note that in all cases, the singleton sets of X appear in the event set.

Definition 2.10. A pair 〈X , Σ〉, where X is a set of one of the above categories,
and Σ is the corresponding set of events, is called a sample space. Because Σ is
always clear from the context, we identify a sample space with its carrier X .

Definition 2.11. For any sample space X , we denote by D(X ) the set of all
probability distributions on X .

So far, we have not assumed any structure on the set of outcomes X . The
most straightforward way to obtain structure is to use the available structures
on R by assigning real numbers to outcomes, thereby transforming the set of
outcomes into a subset of R.

Definition 2.12. A function X : X → R is called a random variable. We say
that X is finite, countable or uncountable if its range is.

14
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Sometimes, it is useful to translate the set of outcomes into some set different
from R. We call such transformations pseudo random variables.

As was just stated, a random variable transforms outcomes into real num-
bers. Via this transformation, we can forget about the original distribution, and
consider the induced distribution on R.

Notation 2.13. If a random variable X is distributed according to P , we write
X ∼ P .

Definition 2.14. Let X be a random variable defined on the sample space X
with distribution P . We define the expected value or expectation of X by

E [X ] :=

∫

X

X dP

Definition 2.15. Let X be a random variable on the sample space X . We say
that X is constant if ∃c∀x ∈ X : X(x) = c. We call X almost surely constant if
∃c : P (X = c) = 1. This implies P (X = E [X ]) = 1.

Remark 2.16. A random variable X on X is almost surely constant if all measure
of P is assigned to a region where X is constant. This can be solely due to X ,
namely when X is constant, or solely due to P , namely when P puts all measure
on a single point, or partially due to both.

Theorem 2.17 (Jensen’s Inequality [Wil91, Theorem, p. 61]). Let X be a
convex set, P a probability distribution on X . Then for any convex function
f : X → R,

EP

[
f(X)

]
≥ f

(
EP [X ]

)
(2.1)

Moreover, if f is strictly convex, then equality in (2.1) implies that X is an
almost surely constant random variable.

One level of abstraction higher, we work with a meta-distribution on sets of
probability distributions. We can interpret such a meta-distribution as a prior
probability; one first samples a distribution according to this meta-distribution,
and then generates an outcome according to the sampled distribution. For more
detail, see [GD04, Section 9.2]. Such a meta-distribution can be collapsed into
a single distribution on outcomes as follows.

Definition 2.18. Let X be a set, Q a convex set of distributions on X , and Q

a distribution on Q. We define EQ [Q], the expected distribution of Q on X , by

EQ [Q] (A) := EQ

[
Q(A)

]
=

∫

Q

Q(A) dQ

where Q = 1Q is a pseudo random variable, and A any event of X .

Definition 2.19. Let X, Y be pseudo random variables with ranges X and Y.
The distribution P that gives the distribution of the pair 〈X, Y 〉 is called the
joint distribution of X and Y . The marginal distributions of X , Y are given by

PX(EX) := P (EX × Y)

PY (EY ) := P (X × EY ),
(2.2)

for events EX and EY over X and Y. We write P (EX) for PX(EX) and P (EY )
for PY (EY ) whenever convenient.
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Definition 2.20. Let n be the number of outcomes, and let P be a probability
distribution on a countable space. The n-fold product distribution of P , denoted
Pn, is given by

Pn(y1, . . . , yn) :=
n∏

i=1

P (yi)

2.6 Information theory

Information theory exploits the relationship between probability distributions
and codes. In this section, we restrict attention to probability distributions on
a finite or countable set. The proofs of the theorems that we merely state below
can be found in [CT90].

2.6.1 Quantifying information

Bits and codes

A bit is a variable that ranges over two values. These values can have many
interpretations, for example: on/off, high/low, 0/1 and true/false. In general,
a single bit allows one to distinguish between two arbitrary possibilities. To
distinguish between more than two possibilities, one uses a code: a collection of
code words, sequences of bits, with an interpretation for each code word. We
restrict attention to codes with the following properties:

• Prefix-free. A code is prefix free if no codeword is a prefix of another. A
non-prefix-free code has two code words a, b such that b extends a. Such
a code uses both the content and the length of code words to convey
information. Such a code is ambiguous; upon receiving, bit by bit, code
word a, one cannot tell whether the message has ended and is a, or whether
it will continue, actually being b.

• Irredundant. A code is irredundant if no two code words have the same
interpretation. A code that has two code words with the same interpreta-
tion is obviously inefficient, because code words can only be used one at
a time.

• Complete. A code is complete if addition of any new code word renders it
non-prefix-free. A code that remains prefix-free when a new code word is
added does not use its full potential.

We will henceforth simply use the word code for an irredundant complete prefix-
free code.

Codes are used to quantify the information content of objects: the amount
of information a certain object contains, with respect to a given code, is given
by the length of the shortest code word that is interpreted as this object.

Idealised bits and probability distributions

There is a strong correspondence between codes and certain probability distri-
butions, as shown by the following theorem.
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Theorem 2.21 (Kraft Inequality [LV93, p.74]). Let ℓ1, ℓ2, . . . be a finite or infi-
nite sequence of natural numbers. There is a prefix-free code with this sequence
as lengths of its binary code words iff

∑

i

2−ℓi ≤ 1.

Moreover, a code is complete iff this holds with equality.

Consequently, a code on X with code words w1 for x1, w2 for x2, etc. cor-
responds to a probability distribution P with P (xi) = 2−ℓi, where ℓi = |wi| is
the length, in bits, of code word wi. Note that this correspondence does not use
the content of code words, only their lengths.

The inverse of this transformation transforms an arbitrary probability dis-
tribution on X into a list of code word lengths as follows

ℓ1 = − logP (x1), ℓ2 = − logP (x2), . . .

These code word lengths can be non-integral. We call such numbers idealised
code lengths, and their unit idealised bits.1

This mathematical generalisation gives us a much more fine-grained way to
measure the information content of objects: the amount of information that a
certain object x contains, with respect to a probability distribution P , is given
by − logP (x). Conversely, we say that this is the amount of information that
P lacks about x.

2.6.2 Basic coding

In the following definitions we use the convention, based on continuity argu-
ments, that 0 log 0

q = 0 and p log p
0 = ∞ for p > 0 and all q, see [CT90]. It

follows that p log p
q = p log p − p log q even when q = 0.

Entropy

Definition 2.22. Let X ∼ P . The entropy of X is defined by

H(X) := EP

[
− logP (X)

]
(2.3)

The entropy of X equals the expected codelength, when the outcome X is
encoded using its source distribution P as the code. When P is a distribution
on X , we abbreviate H(1X ) to H(P ).

Definition 2.23. The conditional entropy of Y given X = x is defined by

H(Y |X = x) := E
Y ∼P (·|X=x)

[
− logP (Y |X = x)

]
. (2.4)

The expected conditional entropy of Y given X2 is given by

EX

[
H(Y |X)

]
= EX,Y

[
− logP (Y |X)

]
. (2.5)

1An important technique in information theory called the Shannon-Fano code allows us to find
code words w1, w2, . . . such that ⌈ℓi⌉, ℓi rounded up, equals |wi|. A second technique, called
arithmetic coding, allows us to actually achieve these idealised code lengths when we code a
sequence of objects, even when a different probability distribution is used for each object.

2In [CT90], the expected conditional entropy is abbreviated to H(Y |X). We cannot adopt this
shorthand, as it would cause ambiguity in the sequel.
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Theorem 2.24 (Chain Rule of Entropy).

H(X, Y ) = H(X) + EX

[
H(Y |X)

]
. (2.6)

KL-divergence

Definition 2.25. For distributions P, Q, we define the Kullback-Leibler diver-
gence of Q from P by

D
(
P‖Q

)
:= EP

[
log

P (X)

Q(X)

]
(2.7)

= EP

[
− log Q(X)

]
−H(P ). (2.8)

The Kullback-Leibler divergence of Q from P is the number of additional bits
one expects to use when coding an outcome from P using Q instead of P .

Note that D is not symmetric in P and Q, so it is not a distance. It does
however have the following important property.

Theorem 2.26 (Information Inequality). Let P, Q be probability distributions.
Then

D
(
P‖Q

)
≥ 0 (2.9)

with equality iff P = Q.

This means that, in expectation, the best code for outcomes that are gener-
ated from P , is P itself.

Theorem 2.27. Let Pn, Qn be product distributions. Then

D(Pn‖Qn) = nD(P‖Q) and H(Pn) = nH(P ).

Proof. It suffices to show

E
Y n∼P n

[
log Qn(Y n)

]
= E

Y1∼P
· · · E

Yn∼P

[
log Q(Y1) + · · · + log Q(Yn)

]
(2.10)

= E
Y1∼P

[
log Q(Y1)

]
+ · · · + E

Yn∼P

[
log Q(Yn)

]
(2.11)

= n E
Y ∼P

[
log Q(Y )

]
, (2.12)

the rest is just definition chasing.

Theorem 2.28. D
(
P‖Q

)
is convex in the pair (P, Q), that is, for all distribu-

tions P1, P2, Q1, Q2 and for all 0 ≤ λ ≤ 1 we have

D
(
λP1 + (1 − λ)P2‖λQ1 + (1 − λ)Q2

)
≤ λD

(
P1‖Q1

)
+ (1 − λ)D

(
P2‖Q2

)

Mutual information

Definition 2.29. For random variables X and Y with joint distribution P and
marginal distributions PX and PY , we define the mutual information between
X and Y by

I(X ; Y ) := EP

[
log

P (X, Y )

PX(X)PY (Y )

]
(2.13)

= D(P‖PXPY ) (2.14)

= H(X) + H(Y ) −H(X, Y ) (2.15)

Note that this quantity is symmetric in X and Y .
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2.6.3 Advanced coding

We analyse three somewhat advanced coding scenarios.

Conditional coding

The following theorem is a generalisation of the information inequality. Suppose
that a pair of outcomes X, Y is generated from P , and we are first told X = x,
and then need to encode Y . Then the best code for this, again in expectation, is
the conditional distribution P (Y |X = x). Of course, this conditional probability
is not defined when P (X = x) = 0, but then simultaneously, the probability
that we observe x in the first place is zero.

Theorem 2.30 (Generalized Information Inequality). Let X and Y be sample
spaces, and let P, Q be probability distributions over X × Y. Then

EP

[
− log P (Y |X)

]
≤ EP

[
− logQ(Y |X)

]
(2.16)

with equality if and only if P (Y |X) = Q(Y |X) almost surely. Here, almost
surely means whenever P (X) > 0.

Proof. For all x s.t. P (x) > 0, we have, by the Information Inequality,

EY |x

[
− logP (Y |x)

]
≤ EY |x

[
− logQ(Y |x)

]
, (2.17)

with equality iff Q(Y |x) = P (Y |x). Taking the expectation over P (X) in (2.17)
yields (2.16), observing that the x where P (x) = 0 do not contribute to the
expectation at all. This immediately shows that equality holds iff P (Y |X) =
Q(Y |X) almost surely.

Meta-coding

Suppose we have a meta-distribution on codes, that we want to use to encode an
outcome from P . We can either sample a code from our meta-distribution, and
then use that to encode the outcome, or we can encode the outcome with the
expected code. The following theorem proves that, in expectation, the latter is
better.

Theorem 2.31. Let X be a set, and Q a convex set of distributions on X .
Then for all distributions Q on Q and P on X :

EQ

[
D(P‖Q)

]
≥ D(P‖EQ [Q]). (2.18)

Proof. First, observe that (2.18) holds iff

EQ EP

[
log

P (X)

Q(X)

]
≥ EP

[
log

P (X)

EQ

[
Q(X)

]
]

(2.19)

iff EP EQ

[
− logQ(X)

]
≥ EP

[
− log EQ

[
Q(X)

]]
(2.20)

Second, note that fx : Q → [0,∞] defined by fx(Q) := − log Q(x) is a convex
function (of Q) for all x ∈ X . Application of Jensen’s Inequality (2.1) yields:

EQ

[
fx(Q)

]
≥ fx(EQ [Q]) so EQ

[
− logQ(x)

]
≥ − log EQ

[
Q(x)

]

As this holds for all x, it also holds in expectation, which proves (2.20).
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Conditional meta-coding

The next theorem generalises the previous theorem to the case where P is a
joint distribution on X, Y , and we need to encode Y given that X = x.

Theorem 2.32. Let X , Y be sets, and Q a convex set of conditional distribu-
tions on Y given X . Then for all distributions Q on Q and P on X × Y:

EP EQ

[
− logQ(Y |X)

]
≥ EP

[
− logEQ

[
Q(Y |X)

]]
. (2.21)

Proof. The proof is analogous to that of Theorem 2.31, using the convex function
fx,y(Q) := − logQ(y|x) instead.

2.7 Game theory

Definition 2.33. A triple G = 〈SA, SB, π〉 is called a matrix game if π : SA ×
SB → R. A matrix game is a two-player zero-sum game in strategic form. We
call the elements of SA and SB pure strategies for players A and B, and π the
payoff.

Definition 2.34. We define the minimax value V and maximin value V by

V := inf
sB∈SB

sup
sA∈SA

π(sA, sB) (2.22)

V := sup
sA∈SA

inf
sB∈SB

π(sA, sB) (2.23)

These value can be interpreted as follows. The maximin value (supposing that
the supremum is attained) is the highest payoff that player A can guarantee,
when player B chooses her move after learning the move of player A. Similarly,
the minimax value is the least payoff that player B can guarantee when her
move is reported to player A before he has to choose his move.

If V = V, we call this quantity the value of G and denote it by just V. If a
game has a value, then playing second provides no advantage.

Remark 2.35. Always V ≤ V, but not necessarily V = V.

Definition 2.36. We call (s̃A, s̃B) a saddle-point of π if for all sA, sB

π(s̃A, sB) ≥ π(s̃A, s̃B) ≥ π(sA, s̃B).

The existence of a saddle-point guarantees that G has a value. On the other
hand, G may have a value but no saddle point. This occurs when the infimum
is not a minimum in (2.22), or the supremum is not a maximum in (2.23).

Definition 2.37. Let G be a matrix game. We call ΣA := D(SA) and ΣB :=
D(SB) the mixed strategies for players A and B. We lift the pure strategy payoff
π to the mixed strategy payoff Π : ΣA × ΣB → R by

Π(σA, σB) := E
sA∼σA

sB∼σB

[
π(sA, sB)

]
:=

∫

SA×SB

π(sA, sB) dσA dσB.
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We call G̃ := 〈ΣA, ΣB, Π〉 the mixed matrix game generated by G. Its minimax
value V and maximin value V are given by

V := inf
σB∈ΣB

sup
σA∈ΣA

Π(σA, σB) (2.24)

V := sup
σA∈ΣA

inf
σB∈ΣB

Π(σA, σB) (2.25)

Theorem 2.38 (Minimax Theorem [Bin91, Theorem 6.4.4]). If G = 〈SA, SB, π〉
is a matrix game with compact sets SA and SB and continuous payoff π, then
V = V for G̃.

Corollary 2.39. Let G = 〈SA, SB, π〉 be a matrix game, with SA and SB finite,

then V = V for G̃.

Definition 2.40. A pair 〈T, <〉 is a tree if

• < is a strict partial order on T , i.e. irreflexive, antisymmetric, transitive,

• there is a unique <-least element, and

• for each x ∈ T ,
{
y ∈ T | y < x

}
is well-ordered by <.

As usual, we shall use T to refer to 〈T, <〉. The <-maximal elements are called
terminals or leaves of T , the other elements are called non-terminals. The sets
of leaves and non-terminals are denoted lf(T ) and nt(T ). The unique <-least
element of T is called the root of T .

Definition 2.41. A game tree is a sextuple
〈
T, <, A, m, 〈Mt〉t∈T , 〈Ia〉a∈A , 〈πa〉a∈A

〉

where the following conditions hold:

• 〈T, <〉 is a finite tree. We call the elements of T positions.

• A is a set. We refer to the elements of A as players.

• For each position t ∈ T , Mt is a set of moves. We say that a move m ∈ Mt

can be performed at t. We define M :=
⋃

t∈T Mt.

• m : nt(T ) → A. We call m the move function. It specifies which player
has to move at each position.

• For each player a ∈ A, Ia is a partition of m−1(a). The elements of Ia

are called the information sets for player a. We use Ia as an equivalence
relation on the positions where player a has to move. Positions that are
related by Ia, i.e. that are in the same information set, are called indis-
tinguishable to player a.

• For each player a ∈ A, πa : lf(T ) → R. πa is called the payoff function for
player a.

• ∀a ∈ A∀i ∈ Ia∀t ∈ i∀t′ ∈ i (Mt = Mt′). That is, for each player, the
same moves are available at indistinguishable positions. We lift the move
function to information sets by defining Mi :=

{
m | m ∈ Mt ∧ t ∈ i

}
for

each i ∈ Ia.
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Definition 2.42. Given a game tree T , a function

s : Ia → M

is called a strategy for player a if for each i ∈ Ia, s(i) ∈ Mi. That is, a strat-
egy prescribes a move for player a, selected from the moves that are available,
under the constraint that the move only depends on what player a can actually
distinguish.
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Chapter 3

Truth finding

In this chapter, we discuss truth finding: obtaining information about the true
model from data. The setting of truth finding is the following. We possess a list
of candidate explanations for reality, and assume that reality is on this list. The
candidate explanations on the list are grouped into models. We suppose that
the effects of our actions depend on reality only indirectly; they only depend
on the model that contains reality. Hence it is important to know which model
is true. We approach this learning task with a blank slate. The only available
information is the outcome of a fixed experiment. This leads to the truth-finding
problem: how to use data to obtain as much information about the true model
as possible, in the worst case. The worst case is taken over all possible choices
for the state of nature.

A related problem which, using our terminology, could be called true world
finding or hypotheses selection, is covered in great detail in [Fer67]. Our setup
is quite similar, allowing us to reuse several of the general theorems. Of course,
some work is needed to prove that the preconditions hold in our setup. The
subtle difference of focusing on finding the true model instead of true world
admits a new decomposition of strategies, using the convex hulls of the models.

In §3.1 we formally state the truth-finding problem. The analysis of the
truth-finding problem is performed in terms of the Nature vs Learner truth-
finding game in §3.2. We give a representation of the strategies in §3.3. We
subsequently prove that the truth-finding game has a value, and that there is
a minimax strategy for Learner in §3.4. We then turn to the computation of
the minimax strategy in §3.5. We show that it equals the best response to the
optimal mixed strategy for Nature. We show that the latter strategy itself is
easy to compute. At the end of this chapter, in §3.7, we relate truth finding
to two other interpretations of learning from data: prediction and compression.
We conclude and summarise in §3.8. All theorems given without proof are not
original to this thesis, and are referenced accordingly.

3.1 Formalisation

We first formalise the setting described in the introduction to this chapter. Then
we give the formal statement of the truth-finding problem.

23



3.1. Formalisation Chapter 3. Truth finding

Notational conventions

We typographically distinguish sets, elements and random variables. We use
Roman and Greek lowercase symbols (y) for elements, and the corresponding
uppercase symbols (Y ) for random variables. We use calligraphic script (Y)
for sets, and the blackboard bold font (M) for sets of sets. We use lowercase
boldface symbols (m), to denote probability mass functions. We have chosen
symbols that are mnemonics for the underlying sample space.

For sets we write Yn for the n-fold Cartesian product. For elements (and for
random variables ranging over elements) we use the following convention: we
use yn as a shorthand for 〈y1, . . . , yn〉. Hence the typical element of Yn is yn.

3.1.1 Truth-finding frames

Definition 3.1. A quadruple

F =
〈
Y, T , M, 〈pθ〉θ∈T

〉

is called a truth-finding frame, or frame for short, if the following conditions
hold:

• Y is a sample space, called the outcome space. We refer to the elements
of Y as outcomes.

• T is a sample space, called the possible-world space. We refer to the
elements of T as possible worlds.

• M is a partition of T , called the set of models. The function M : T → M

assigns to each θ ∈ T the unique M ∈ M that contains it.

• pθ is a probability distribution on Y for each θ ∈ T . We write p(y|θ) for
pθ(y). We use the term mechanics to refer collectively to 〈pθ〉θ∈T .

A truth-finding frame incorporates both the available information about re-
ality, and the objective of the learning task. The available information about
reality is represented by a set of options, the possible worlds, and a conditional
distribution that specifies how each possible world works. The objective of the
learning task is given by the partition, which divides the possible worlds into
models, clusters of similar worlds. The set of models M can be regarded as a
discretisation of the set of possible worlds T . Figure 3.1 depicts a typical par-
tition of possible worlds into models. We want to obtain as much information
as possible about the true model, i.e. the model that contains the true state of
nature.

3.1.2 Examples

Throughout this chapter we use three running examples as an illustration. Let
Y = {H, T} be the sample space of outcomes of a coin flip. We denote by pθ

the distribution that assigns probability θ to H, and hence 1 − θ to T. We use
the following three variants of the biased coin scenario:

• Biased Coin (BC). As in the introduction to this thesis, we use models the
coin is fair and the coin favours heads.
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Figure 3.1 Partition of possible worlds

M1

M2 M3

M4

M5

T

• Reduced Biased Coin (RBC). In this simplified version, we replace the
second model of BC by the coin favours heads considerably.

• Binary Biased Coin. (BBC). In this even more simplified version, we use
two singleton models: the coin mildly favours tails and the coin favours
heads a lot.

The models for each of the variants are formally specified in Table 3.1. In each
case, we have models M = {M1,M2}, possible worlds T =

⋃
M, and truth-

finding frame

F =
〈
T ,Y, M, 〈pθ〉θ∈T

〉
.

3.1.3 Truth-finding problem

Now we can formally state the worst-case truth-finding problem. Let F be a
frame. The unknown actual world θ∗ ∈ T must be classified according to M,
based on data generated from pθ∗ . Ideally, we would like to identify the true
model M∗ := M(θ∗), but in our probabilistic framework we cannot do this with
certainty. Instead we use the data to construct a probability distribution m on
models, where m(M) represents our degree of belief that M∗ = M.

An outsider knowing M∗ can evaluate m by computing the log loss, which
is given by L(M∗,m), where

L(M,m) := − logm(M).

Recall that this is the amount of information that we, using m, lack about the
true model. Namely, it is the number of bits that the outsider has to transmit

Table 3.1 Biased coin example models

M1 M2

BC
{
1/2

} (
1/2, 1

]

RBC
{
1/2

}
(0.6, 1]

BBC
{
1/3

} {
5/6

}
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to us to allow us to identify M∗ with certainty. For convenience, we define

L(θ,m) := L(M(θ),m).

We do not know M∗, so we cannot evaluate the performance of m. This
impasse can be overcome by considering strategies. A strategy f is a function
that assigns a distribution on models to each outcome, i.e. a conditional distri-
bution on models given outcomes. A strategy f can be pitted against a possible
world θ, yielding the following expected loss, or risk

R(θ, f) := E
Y ∼pθ

[
L

(
θ, f(Y )

)]
. (3.1)

Hence the problem becomes this: find a strategy f that minimises the worst-
case risk, i.e. attains

V = inf
f

sup
θ∈T

R(θ, f).

We will show in §3.4.2 that there is always an f that attains V.

3.1.4 Assumptions

We must assume that |M| ≥ 2 for there to be a truth-finding problem, and we
must assume |Y| ≥ 2 for there to be a basis for a solution. To simplify analysis,
we make the following additional assumptions.

Assumption 3.2. The set of outcomes Y is finite.

Assumption 3.3. The set of models M is finite.

These assumptions, albeit restricting, capture many practically interesting
cases, for instance the biased coin example. In the anvil drop example, the
outcomes are time measurements. The set of time measurements is in prin-
ciple uncountable, but it is naturally discretised by contemporary stopwatch
manufacturers, who supply a fixed number of decimal digits.

These assumptions allow us to identify distributions on Y and M with points
in the unit |Y|- and |M|-simplices. Recall from Definition 2.6 that the unit n-
simplex is given by

∆n :=
{
p ∈ Rn

+ | pT1 = 1
}

.

This identification allows us to regard each model M ∈ M as a subset of ∆|Y|.
We do not have to place any restrictions on the set of possible worlds, nor on

the mechanics.1 We see this as a passed sanity check; these are the two places
where the complexity of real-world applications will be reflected.

3.2 Truth-finding game

Worst-case expected-value optimisation problems like the truth-finding prob-
lem are naturally thought of as two-player games with chance moves, and this
viewpoint proves fruitful in our case. The players in the truth-finding game are

1Of course, there are the standard measurability conditions. We list all the conditions in
Appendix A.
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called Learner, Nature, and Chance. A run of the truth-finding game consists of
three steps. First, Nature, the antagonist, chooses the actual world from the list
of possible worlds. Second, Chance, an independent and impartial player, gener-
ates data from the actual world. Third, Learner, the protagonist, uses these data
to update his information about the label of reality, and express his beliefs about
the label of the actual world in terms of a probability distribution. Learner’s
loss is given by the log loss. The complete game is shown in Protocol 3.1.

Protocol 3.1 The truth-finding game

Arena: Truth-finding frame F =
〈
Y, T , M, 〈pθ〉θ∈T

〉
.

1: Nature covertly chooses a hypothesis θ∗ ∈ T . Say M(θ∗) = M∗.
2: Chance generates an outcome y according to pθ∗ .
3: Learner expresses his belief about the true model as a distribution m on

models.
Loss: Learner suffers − logm(M∗).

3.2.1 Many outcomes

Protocol 3.1 states that Chance generates a single outcome Y from Y. If the
outcome space is “small” compared to the possible world space, then a single
outcome is not very informative. We can of course have Chance repeat the
data-generating process n times. The n outcomes are then, by construction,
independent identically distributed (i.i.d.). Sequences of n i.i.d. outcomes can
be modelled by a single outcome in a product frame.

Definition 3.4. Let F =
〈
Y, T , M, 〈pθ〉θ∈T

〉
be a frame, and let n be a given

number of repetitions. Then the n-fold product frame is given by

Fn :=
〈
Yn, T , M, 〈pn

θ 〉θ∈T

〉
, (3.2)

where

pn
θ (yn) :=

n∏

i=1

pθ(yi).

With this reduction in place, it suffices to consider only single-outcome truth-
finding games.

3.2.2 Extensive form game

Protocol 3.1 specifies a two-player game of imperfect information with chance
moves. The extensive form representation of the Binary Biased Coin example is
shown in Figure 3.2. This particular example has been chosen for simplicity, but
it is typical. The game tree always has the same structure. For different frames,
only the probabilities along the edges and the fanout at each level of the game
tree change. Nature’s move is performed covertly, i.e., Learner is not informed
of her choice of world. Hence Learner cannot distinguish the situations after
Nature’s move. A collection of indistinguishable situations for a particular player
is called an information set for that player. Information sets are properties of
game trees. The information set for Learner after Nature’s move is indicated
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in Figure 3.2 by a dotted line. After Chance’s move, which is made publicly,
Learner generally remains uninformed about the exact position in the game tree.
This is indicated by the two lower dotted lines in Figure 3.2, which connect
indistinguishable states for Learner, i.e. positions in which Chance has selected
the same outcome.

The truth-finding game in Protocol 3.1 and its extensive form are essentially
sequential. First Nature chooses the world. Second, Chance generates an out-
come, according to a distribution that depends on the world chosen by Nature’s.
Third, Learner chooses a distribution on models, which depends on the outcome
that Chance generated. Games with such dependencies are complicated to anal-
yse. We can remove these dependencies by transforming the game into normal
form, at the cost of increasing the complexity of the moves.

3.2.3 Normal form game

Each extensive form game has an associated normal form game. The former
is represented by a game tree, whereas the latter is a game in the sense of
Definition 2.33. In the normal form game, the moves for a player are given by
his strategies in the extensive form game. Recall from Definition 2.42 that a
strategy for a player in an extensive form game is a function that specifies what
that player will do at each position in the game tree she can encounter. A game
in normal form is parallel instead of sequential. Both players can choose their
moves independently, as all dependencies are now captured by the moves, which
internalise the strategies.

We first consider pure strategies, that is, strategies that deterministically
choose moves in the extensive form game. Then we turn to mixed strategies:
probability distributions over pure strategies.

3.2.4 Pure strategies

A pure strategy for a player assigns a legal move to each information set for that
player where it is this player’s turn. Nature makes a single move, at the start of
a run of the game, hence a pure strategy for Nature is a choice of reality from
the possible worlds. Strategies of Nature are identified with elements of T .

When it is Learner’s turn, the data have already been generated. A move
for Learner consists of choosing a distribution on models. A pure strategy for
Learner assigns such a distribution to each possible realisation of the data. So
Learner’s strategies are elements of F :=

[
Y → D(M)

]
. Note that F is not finite,

although by our assumptions Y and M are.

Definition 3.5. When Nature plays θ ∈ T and Learner plays f ∈ F , then the
risk of Learner is given by

R(θ, f) := E
Y ∼pθ

[
L

(
θ, f(Y )

)]
. (3.3)

The expected loss eliminates Chance by taking an expectation over outcomes.

Definition 3.6. Given a truth-finding frame F, the triple GF := 〈T ,F , R〉 is
called the normal form of the truth-finding game. It is a game in the sense of
Definition 2.33.
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Figure 3.2 Truth-finding game tree for the BBC example. The information
sets of Learner after Nature’s and Chance’s moves are indicated by dotted lines.
We denote the possible worlds by w1/3 and w5/6 to disambiguate world names
and probabilities.

Nature

Chance

Learner

w1/3

H 1
3

L(M1,m)

m

T2
3

L(M1,m)

m

w5/6

H 5
6

L(M2,m)

m

T1
6

L(M2,m)

m

3.2.5 Mixed strategies

We now consider mixed strategies in the game GF. Recall (Definition 2.37)
that a mixed strategy is a probability distribution on pure strategies. In some
situations, playing a mixed strategy can, in expectation, yield strictly lower
risk worst-case risk than playing any single pure strategy. As a fortunate side
effect, mixed strategies are also easier to analyse. The set of mixed strategies
for Nature is D(T ). The set of mixed strategies for Learner is D(F). D(F)
is a set of distributions on a set of conditional distributions, which may seem
excessively complicated. Luckily, we can restrict attention to a much simpler
set. The following is included for completeness.

Definition 3.7. When Nature plays PΘ ∈ D(T ) and Learner plays PF ∈ D(F),
then the expected risk of Learner is given by

R(PΘ, PF ) = E
Θ∼PΘ

E
F∼PF

E
Y ∼pΘ

[
L

(
Θ, F (Y )

)]
. (3.4)

We use Θ, F and Y as random variables ranging over the possible worlds T ,
Learner’s pure strategies F and the observations Y. Application of the risk func-
tion to a probability distribution on either argument will always be interpreted
as an expected value, and we will refer to it as just risk.

Theorem 2.32 shows that it is never strictly beneficial for Learner to use
a mixed strategy. For any mixed strategy of Nature PΘ, and for all mixed
strategies of Learner PF :

R(PΘ, PF ) ≥ R
(
PΘ, E [PF ]

)
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Pure strategies for Learner already encompass the full power of randomisation.
We will not consider mixed strategies for Learner any further. Summarising,

Definition 3.8. When Nature plays PΘ ∈ D(T ) and Learner plays f ∈ F , then
the expected risk of Learner is given by

R(PΘ, f) = E
Θ∼PΘ

E
Y ∼pΘ

[
L

(
Θ, f(Y )

)]
. (3.5)

We emphasise that mixed strategies cannot be disregarded for Nature. In
particular, in later analysis, we will require Nature to disclose her strategy to
Learner before Learner chooses his. Now, if Nature plays a pure strategy, then
Learner can always achieve zero loss. (Knowing the actual world, Learner can
place all probability on the true model.) On the other hand, when Nature uses
a randomised strategy in this scenario, then Learner cannot do this anymore.

Example 3.9 (BBC ctd.). A mixed strategy for Nature is a distribution on
T =

{
1/3, 5/6

}
. Assume Nature chooses PΘ to be the uniform distribution on

the two possible worlds. A pure strategy for Learner is a distribution on M for
each outcome. Learner could for example play the strategy f , given by

f M1 M2

T 3/4 1/4
H 1/4 3/4

The expected risk of Learner is given by

R(PΘ, f) = −
1

2
·

(
2

3
· log

3

4
+

1

3
· log

1

4

)
−

1

2
·

(
1

6
· log

1

4
+

5

6
· log

3

4

)

≈ 0.8113

(3.6)

This strategy attains quite a respectable risk in this particular case. We will
show in Example 3.20 that the optimal strategy always attains risk 0.8044.

3.2.6 The joint space

A truth finding frame F, and a mixed strategy PΘ for Nature together induce a
joint distribution P on possible worlds and outcomes. PΘ gives a distribution on
worlds, and for each world θ, pθ gives a conditional distribution on outcomes.
If the set of worlds is countable, then this distribution is specified by

P(θ, y) = PΘ(θ)pθ(y).

For general distributions on worlds, we have the following. The sample space
of P is T × Y. Its events are given by the product of the partaking σ-algebras.
The joint distribution P is given by

P(ET × EY) :=

∫

ET

p(EY |θ)PΘ(dθ). (3.7)

We use the following random variables on the joint space:

Θ : (T × Y) → T 〈θ, y〉 7→ θ

Y : (T × Y) → Y 〈θ, y〉 7→ y

M : (T × Y) → M 〈θ, y〉 7→ M(θ).

(3.8)
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These random variables should technically be called pseudo random variables,
as they map into sample spaces that are not 〈R,B〉. We will only use them as
building blocks to construct proper random variables.

These definitions allow us to write the risk as

R(PΘ, f) = EP

[
L

(
M, f(Y )

)]
. (3.9)

We will henceforth omit P whenever it is clear from the context.

3.3 Representing strategies

In this section, we provide representations for strategies of both Learner and
Nature. The representation of Learner’s strategies is quite straightforward: his
strategies correspond to stochastic matrices. For Nature, we reap the benefits
of focusing on finding the true model, instead of finding the true world. In our
framework, Nature’s strategies admit a simple representation. We show that a
strategy for Nature can be decomposed into a distribution on models, and, for
each model, a distribution on outcomes, which must be chosen from the convex
hull of that model.

3.3.1 Learner’s strategies

We showed that Learner does not need mixed strategies, and this simplifies
representation considerably. Let n = |Y| and k = |M|. A pure strategy f for
Learner corresponds to a n × k matrix A, defined by

Ay,M = f(M|y).

The matrix A is a stochastic matrix, i.e. all entries are from [0, 1], and rows sum
to one. This perspective allows a clear visualisation of Learner’s strategies.

Definition 3.10. An equaliser strategy for Learner is a strategy f , such that
R(·, f) is constant. That is, no matter what Nature does, the risk is always the
same.

As the set of models is finite, there is an equaliser strategy for Learner,
namely the strategy just guessing. This strategy assigns the uniform probability
distribution on M to each outcome. It is easily seen that the risk of this strategy
is given by log |M|.

3.3.2 Nature’s strategies

A mixed strategy for Nature is a distribution PΘ on possible worlds. Such a
distribution induces the distribution P on the joint space T × Y. Observe, for
example in (3.9), that Learner’s risk depends on the actual world that Nature

chooses only via the true model and the generated outcome. Therefore it is
useful to characterise the distributions on M × Y that Nature can realise.

For ease of exposition, we pretend that T is countable, to be able to write
sums instead of integrals. The reader may check that the reasoning extends to
the uncountable case. We have

P(M, y) = P(y|M)P(M), where P(y|M) =
∑

θ∈M

p(y|θ)P(θ|M). (3.10)
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In this formula, p is fixed by the truth-finding frame. Both P(θ|M) and P(M)
are determined by Nature’s strategy, from the joint

P(θ,M) =

{
P(θ) if θ ∈ M,

0 otherwise.

We give names to three important quantities in (3.10):

• The distribution P(M) on models is called the prior on models. We use
the fact that models are events over T .

• For each model M, the distribution P(Θ|M = M) on the worlds in M is
called the within-model prior of M.

• The term
∑

θ∈M p(y|θ)P(θ|M), which we will subsequently abbreviate to
P(y|M) is called the within-model marginal.

In (3.10), we separate P(θ) into a prior distribution P(M) and a within-model
prior distribution P(θ|M), but we can also reverse this process, and obtain any
distribution on T from a prior and a within-model prior.

The within-model marginal is a distribution on outcomes for each model M.
It is obtained by weighing the distributions p[M] := 〈pθ〉θ∈M according to the
within-model prior weights. It is an expected distribution, where the partaking
distributions are fixed (they are specified by the truth-finding frame), while the
relative contribution of each possible world in the model is controlled by Nature.
The set of all distributions that can be obtained in this way is, by definition,
equal to the convex hull of p[M].

For each model, Nature can choose the within-model prior independently of
the other within-model priors. So, by varying her strategy, Nature can achieve
each combination of within-model marginals from the convex hull of each of the
models. Finally, by choosing the prior on models, Nature fixes P(M, y) in (3.10).
The prior can also be chosen arbitrarily, independent of the within-model priors.
This leads to the following characterisation:

Each possible strategy for Nature can, for the purpose of truth
finding, be equivalently represented by

• a distribution PΘ on possible worlds; or

• a prior on models P(M), and a within-model prior on pos-
sible worlds P(Θ|M = M) for each model M; or

• a prior on models, P(M), and, for each model M, a dis-
tribution pM on outcomes, chosen from the convex hull of
p[M].

The third representation is important enough to receive a name.

Definition 3.11. A pair
〈
P, 〈pM〉M∈M

〉
is called a collapsed strategy for Na-

ture if P is a probability distribution on M, and pM ∈ conv(p[M]) for each
M ∈ M.
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Example 3.12. Consider the instance of the truth-finding problem given in
Figure 3.3. In this case |Y| = 3, |T | = 23 and |M| = 2. Finiteness of T implies
that each model is also finite, thus each model corresponds to a finite set of
points in R3. The convex hull of a finite set is a polyhedron, and in ∆3 these
are polygons.

3.4 Solution of the truth-finding game

The previous sections introduced the truth-finding game. Now we show that it
can be solved. We first prove that the truth-finding game has a value, and that
Learner always has a minimax strategy. Then we provide an algorithm to find
the value. We start by eliminating a pathological case, in which the value can
be obtained immediately.

3.4.1 Triviality

We showed in the previous section that a strategy for Nature can be decom-
posed into a probability distribution on models, and, per model, a within-model
distribution on possible worlds in that model. The per-model distribution on
possible worlds can be summarised (by taking the expectation) into a per-model
distribution on outcomes, that is, a single distribution. This distribution nec-
essarily lies in the convex hull of the model. A strategy for Nature can thus be
reduced to a finite mixture of distributions on outcomes.

When the convex hulls of all models share a common world θ, we call the
truth-finding problem trivial. This is because the best strategy for nature is
to choose the prior over models uniform, and all within-model priors such that
they put all probability on θ. Then no outcome provides information that helps
differentiating the models, and Learner can perform no better than just guessing,
suffering loss equal to log |M|.

3.4.2 Value

The truth-finding game has a value (Definition 2.34) if

sup
PΘ

inf
f

R(PΘ, f) = inf
f

sup
PΘ

R(PΘ, f).

The right hand expression is the lowest risk that Learner can guarantee in the
game where he moves first, and Nature, after learning Learner’s choice, moves
second. Analogously, the left hand expression is the highest risk that Nature

can guarantee when she has to play first, and Learner chooses his move after
learning her move. We will show that the truth-finding game has a value, hence
there is no advantage to playing second. We denote by V(F) the value of the
truth-finding frame on the arena F.

Note that in general it is not necessarily the case that strategies exist that
witness this value. A distribution PΘ that attains the left hand side is called
least favourable. A strategy f that attains the right hand side is called minimax.
We will show that a minimax strategy always exists in the truth-finding game.
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Figure 3.3 Convex hull of models. The triangle shows the projection of ∆3

onto the plane. Each model is a set of points in R3. The shaded areas are the
convex hulls of the models.

e1 e2

e3

M2M1

Definition 3.13. A set C ⊆ D(F) is essentially complete [Fer67] if given any
PF ∈ D(F), there is a P′

F ∈ C such that

∀θ : R(θ, P′
F ) ≤ R(PF , θ).

Exposing an essentially complete class simplifies matters, for there is no
reason to consider strategies outside of that class anymore. One can always
find strategies within the class that are just as good. In our case, the set of
pure strategies for Learner is essentially complete. In the following theorems, we
interpret each pure strategy f ∈ F as a mixed strategy that puts all probability
on f .

Theorem 3.14. F is essentially complete.

Proof. Theorem 2.30.

The following theorem will allow us to conclude that the truth-finding game
has a value and that a minimax strategy exists. The remainder of this section
is spent verifying the preconditions of this theorem for the truth-finding game.

Theorem 3.15 ([Fer67, Theorem 2.9.2]). Let C be essentially complete for the
game 〈T ,F , R〉. Assume there is a topology on C such that

• C is compact and

• R is lower semi-continuous in f ∈ C for all θ ∈ T .

Then the game has a value, i.e.,

sup
PΘ

inf
f

R(PΘ, f) = inf
f

sup
PΘ

R(PΘ, f).

Moreover, a minimax f attaining inff supPΘ
R(PΘ, f) exists in C.
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Theorem 3.16. F is compact.

Proof. Using Assumption 3.2 and Assumption 3.3, let n = |Y| and k = |M|.
Then

F =
[
Y → D(M)

]
∼= (∆k)

n
(3.11)

is closed and bounded, hence compact, in Rnk.

Definition 3.17. The extended logarithm function log(x) : R → R is defined
by

log(x) =

{
log(x) if x > 0,

−∞ otherwise.

Lemma 3.18. log is continuous.

Proof. We need to show that log is both upper and lower semi-continuous. The
intervals of type [−∞, r) and (r, +∞], with r ∈ R, are a subbasis for the order
topology on R. We need to show that the following sets are open for all r ∈ R

(lower) log−1
(
(r, +∞]

)
=

{
x ∈ R | log(x) > r

}
= (2r, +∞) (3.12)

(upper) log−1
(
[−∞, r)

)
=

{
x ∈ R | log(x) < r

}
= (−∞, 2r) (3.13)

Both sets are open intervals, hence open sets in the order topology on R, for
each r ∈ R. We conclude that log is continuous.

Theorem 3.19. R(θ, f) is continuous in f for all θ ∈ T .

Proof. Fix θ. We have

R(θ, f) = EY ∼pθ

[
− log f(M(θ)|y)

]
(3.14)

= −
∑

y

pθ(y) log f(M(θ)|y) (3.15)

A weighted sum of finitely many continuous functions is continuous. It remains
to show that for given y,M, the function f 7→ log f(M|y) is continuous. We
already proved that the (extended) logarithm function is continuous on R in
a single argument, so it is also continuous on the subspace topology on [0, 1].
Continuous functions are closed under composition, hence it suffices to show
that the function f 7→ f(M|θ) is continuous. The preimage of a basic open set
[0, r) or (r, 1] under this function is the intersection of F with an open half-space,
hence it is open.

We have now achieved the central result of this chapter. We proved in
Theorems 3.16 and 3.19 that the preconditions of Theorem 3.15 hold for the
truth-finding game, hence we can conclude:

The truth-finding game has a value, and furthermore, Learner

has a minimax strategy.

Example 3.20 (BBC ctd.). The following tables show the minimax strategies
for Learner in the binary biased coin model, for n = 1, 2, 3 outcomes.
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n = 1, V = 0.8044 n = 2, V = 0.6565 n = 3, V = 0.5399

#H m(M1) m(M2)

0 0.8038 0.1962
1 0.2906 0.7094

#H m(M1) m(M2)

0 0.9427 0.0573
1 0.6220 0.3780
2 0.1413 0.8587

#H m(M1) m(M2)

0 0.9852 0.0148
1 0.8690 0.1310
2 0.3988 0.6012
3 0.0622 0.9378

As expected, the more heads Learner observes, the more he should prefer the
model saying that the coin favours heads. Also, the more outcomes, the more
information is achieved in expectation.

3.5 Computing the minimax strategy

We have established that the truth-finding game
〈
D(T ),F , R

〉
has a value, and

a minimax strategy for Learner exists. More precisely,

sup
PΘ

inf
f

R(PΘ, f) = V = inf
f

sup
PΘ

R(PΘ, f),

where the right-hand side is attained for some strategy f . We now consider the
problem of computing that strategy f . This is important, because a straight-
forward numerical approach, even for a moderate number of outcomes, quickly
becomes infeasible.

In this section, we will first show in §3.5.1 that we can find a minimax
strategy for Learner in a quire restricted set, namely in the set of strategies
that are the optimal response to a strategy of Nature. This is very helpful, as
strategies for Nature have far lower complexity than strategies for Learner.

Subsequently, we will show in §3.5.2 that we can directly optimise the left-
hand side of the preceding equation. This yields the least favourable distri-
bution, if it exists. Then we apply an important insight from Game The-
ory, namely, that the minimax strategy is the optimal response to the least
favourable distribution. This leads to the somewhat surprising conclusion that
Learner, to play optimally, must assume that Nature will play according to the
least favourable distribution.

If the least favourable distribution does not exist, then there is a chain of
less and less favourable distributions, whose limit is not a strategy for Nature.
In this case, we can apply the same reasoning. We will conjecture that the limit
of the corresponding chain of optimal response strategies is always a strategy
for Learner, and that this strategy is minimax.

3.5.1 Extended Bayes

We have shown that the pure strategies for Learner form an essentially complete
class. The following allows us to restrict attention even further, namely, to
the class of strategies that are an optimal response to some mixed strategy
for Nature. The notion of optimal response is formalised by the following two
definitions.

Definition 3.21. A strategy f ∈ F is called ǫ-Bayes with respect to a distri-
bution PΘ on T if

R(PΘ, f) ≤ inf
f∈F

R(PΘ, f) + ǫ.
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We abbreviate 0-Bayes to just Bayes.

A Bayes strategy for Learner is the optimal response to a particular strategy
for Nature. When dealing with chains of less and less favourable distributions,
we need the following extension.

Definition 3.22. A strategy f ∈ F is called extended Bayes for a collection
D of distributions on T if f is ǫ-Bayes with respect to some PΘ ∈ D for each
ǫ > 0.

Theorem 3.23 (Complete Class Theorem, [Fer67, Theorem 2.10.3]). Let C
be essentially complete for the game 〈T ,F , R〉 satisfying the preconditions of
Theorem 3.15. Then the set of extended Bayes strategies in C is essentially
complete.

So we have that (a) there is a minimax strategy for Learner in the truth-
finding game, and (b) if there is a minimax strategy, then there is an extended
Bayes minimax strategy. So we only need to consider extended Bayes strategies
to find a minimax strategy.

Example 3.24 (BC ctd.). We can now formalise the intuition that the Biased
Coin problem is trivial. Recall that in the Biased Coin problem, we have

T =
[

1
2 , 1

]
, M1 =

{
1
2

}
, and M2 =

(
1
2 , 1

]

Now consider a distribution PΘ on possible worlds. By §3.3.2, we can represent
PΘ by a distribution P(M) on models, and for each model, a distribution on
outcomes from within the convex hull of that model. In our example, the models
equal their convex hulls. We can find two numbers α ∈ [0, 1] and β ∈ M2, such
that upon defining

P(M1) = α pM1
(H) = 1

2 pM2
(H) = β

P(M2) = 1 − α pM1
(T) = 1

2 pM2
(T) = 1 − β

(3.16)

we have
P(y,Mi) = P(Mi)pMi

(y).

The distribution in the previous line is explicitly spelled out below, together
with the best response for Learner.

P(y,Mi) P(Mi|y)

M1 M2

H α/2 (1 − α)β
T α/2 (1 − α)(1 − β)

M1 M2

H α/2
α/2+(1−α)β

(1−α)β
α/2+(1−α)β

T α/2
α/2+(1−α)(1−β)

(1−α)(1−β)
α/2+(1−α)(1−β)

Now consider what happens when α = 1/2 while β → 1/2. Then all entries
of the above right table tend to 1/2. This means that Nature has strategies to
which the best response for Learner lies arbitrarily close to just guessing. The
actual value β = 1/2 is not a valid choice for Nature, as it is not present in M2.

Let D be the collection of distributions that Nature can achieve with α = 1/2
and β ∈

(
1/2, 1

]
. Learner’s strategy of just guessing is extended Bayes with

respect to D, while it is not Bayes with respect to any mixed strategy for
Nature. The following section will allow us to conclude that just guessing is the
minimax strategy for Learner.
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3.5.2 Generalised entropy

To find the minimax strategy for Learner, we look at the best-response-value
function, or generalised entropy [GD04], which is given by

H(PΘ) := inf
f

R(PΘ, f)

= inf
f

E
M,Y ∼P

[
− log f(M |Y )

]
.

(3.17)

Recall that here P depends on Nature’s strategy PΘ. The generalised entropy
function yields the risk as a function of Nature’s strategy, when the optimal
response for Learner is used. We will show that it is concave, hence it has no
local maxima. The maximum can hence easily be found, at least numerically,
using methods from [BV04]. The maximum is achieved for the least favourable
distribution (the maximin strategy for Nature). This in turn will help us find
the minimax strategy for Learner.

Application of Theorem 2.30 yields that the Bayes response f is given by

f(M|y) = P(M = M|Y = y) (3.18)

From this, one can easily derive

H(PΘ) = EY

[
H(M |Y )

]
(3.19)

= H(Y, M) −H(Y ) (3.20)

= H(M) − I(M ; Y ). (3.21)

This last line is particularly telling. If Nature’s mixed strategy is publicly an-
nounced before Learner has to choose his strategy, then Nature must try to min-
imise the amount of information I(M ; Y ) that the outcome contains about the
generating model, while on the other hand maximising the uncertainty H(M)
about the generative model inherent in her strategy.

Theorem 3.25 ([Fer67, p.90]). If PΘ attains maximum generalised entropy,
then f , defined in (3.18) as the best response to PΘ, is a minimax strategy for
Learner.

Theorem 3.26. The generalised entropy is bounded. More specifically,

0 ≤ H(PΘ) ≤ log |M| .

Proof. We obtain non-negativity by (3.19), using the facts that entropies of
finite random variables are nonnegative, and that expectations preserve this.
For the upper bound, consider the (equaliser) strategy of Learner that assigns
the uniform distribution on models to each outcome. This strategy has risk
log |M| irrespective of Nature’s move. Now observe that this strategy partakes
in the infimum of (3.17).

Theorem 3.27. H(PΘ) is concave.

Proof. Given in Appendix B. The proof is analogous to the proof of the con-
cavity of the normal entropy, which can be found in [CT90].
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Corollary 3.28. If the convex hull of each model is closed, then there is a least
favourable distribution P∗

Θ for Nature, i.e. a distribution for which

H(P∗
Θ) = sup

PΘ

H(PΘ).

We note that if the models are closed to begin with, then their convex hull is
closed too.

Proof. The generalised entropy function H is concave on D(T ). A concave
function obtains its supremum on a closed set. Closedness of the convex hull
of each model implies closedness of their finite union, T , which in turn implies
closedness of D(T ).

Putting together Theorems 3.25, 3.27 and Corollary 3.28, we obtain the main
result of this section:

If the convex hulls of the models are closed, then a least
favourable distribution exists. Moreover, this distribution can
easily be found by maximising the concave generalised entropy
function. The minimax strategy for Learner is the optimal re-
sponse to it.

Example 3.29 (BBC ctd.). We analyse the behaviour of the binary biased coin
model for arbitrary biases. Let

P1(H) = α P2(H) = β (3.22)

A strategy for Nature specifies the mixing weights w over P1 and P2. To compute
the optimal mixing weights, we consider the generalised entropy function. For
n outcomes, we have

H(w) = EY n

[
H(M |Y n)

]
(3.23)

Define nH(yn) :=
∣∣{i | yi = H

}∣∣ and nT(yn) :=
∣∣{i | yi = T

}∣∣. When clear
from the context, we will omit the argument yn and just write nH, nT. Clearly
nH + nT = n. For n i.i.d. outcomes, we have

P1(y
n) = f1(nH) := αnH(1 − α)nT , (3.24)

P2(y
n) = f2(nH) := βnH(1 − β)nT , (3.25)

P (yn, j) = f(nH, j) := fj(nH)w(j). (3.26)

We expand the generalised entropy, and then combine all terms with the same
number of heads.

Hn(w) = −
∑

yn

2∑

j=1

P (yn, j) log
P (yn, j)

P (yn, 1) + P (yn, 2)
(3.27)

= −
n∑

i=0

(
n

i

) 2∑

j=1

f(i, j) log
f(i, j)

f(i, 1) + f(i, 2)
(3.28)

In Figure 3.4a, we have plotted argmax
w

Hn(w) as a function of n for α = 1/3
and β = 5/6, i.e. the BBC example. Figure 3.4b shows the same function for
α = 1/2 and β = 0.6, i.e. the RBC example. Both graphs have been obtained
by applying the Newton method to the concave function Hn(w). We cannot
explain the small-scale fluctuations in Figure 3.4a. They are most probably due
to machine precision issues.
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Figure 3.4 Least favourable distribution. Both plots show the least favourable
prior weight of P1 as a function of n.
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Arbitrary models

It is strongly suggested by the results of this section that our main result can be
extended to the case where the convex hulls of the models are not closed. The
convex hull of a set is not necessarily closed, e.g. in the BC example, the convex
hull of the second model, the fair coin model, is a half-open interval. There is,
however, a standard way to obtain closed convex hulls.

Definition 3.30. Let C ⊆ Rn be a set. The closed convex hull of C is defined
as the intersection of all closed convex sets containing C. The closed convex
hull of C is the closure of the convex hull of C.

The current state of research only licenses a conjecture.

Conjecture 3.31. The minimax strategy f is the Bayes response to the least
favourable distribution for Nature over the closed convex hulls of the models. In
particular, when the closed convex hulls have a common intersection, then the
truth-finding problem is trivial and Learner can do no better than just guessing.

Regarding Theorem 3.27, one might wonder whether the generalised entropy
is strictly concave. In general, this is unfortunately not true. For example, take
some truth-finding problem with finite models, and take some possible world θ
that is in the support of the least favourable distribution. Now duplicate this
world, i.e. add a fresh world θ′ to the model M(θ), and set pθ′ := pθ. It is easy
to see that in the truth-finding problem on this new frame, the original least
favourable distribution is still least favourable. By transferring all probability
from θ to θ′ we obtain a different least favourable distribution. Any mixture
of these is least favourable too. We have a continuum of distributions with
identical generalised entropy.

We believe that the representation of §3.3.2 circumvents this problem. The
distributions on worlds that are used in the above construction have identical
associated collapsed strategies.

Conjecture 3.32. H, regarded as a function of collapsed strategies for Nature,
is strictly concave.
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3.6 Similarity

By §3.3.2, each mixed strategy for Nature corresponds to a set of distributions
on outcomes, one from the convex hull of each model, with associated mixing
weights. Intuitively, for the least favourable distribution, these partaking dis-
tributions must be similar. Indeed, the more similar they are, the harder it will
be for Learner to tell them apart on the basis of an outcome. The truth-finding
problem defines a similarity measure, which we develop in this section. We have
formulated our notion of similarity in general terms, as we believe that it is of
independent interest.

The central question is the following: given an outcome, drawn from a mix-
ture over probability distributions, what do we know about its origin? In other
words, how hard is it to tell which probability distribution in the mixture was
used to generated that outcome?

Definition 3.33. Let Y be a sample space, P =
〈
Pj

〉
j∈J

a family of distribu-

tions on Y, and Q a distribution on J . Let P denote the joint distribution on
J × Y defined by P(j, y) := Q(j) · Pj(y). We define the Q-similarity of P by

S(P, Q) = E
〈J,Y 〉∼P

[
− log P(J |Y )

]
(3.29)

= E
Y ∼P

[
H(J |Y )

]
(3.30)

This definition has the following interpretation. If nature generates an out-
come (Y, J) from P, but only discloses Y , then our uncertainty about J , the
actual distribution that generated Y , is measured by H(J |Y ). Hence, S(P, Q)
is the average amount of information we obtain about J from an outcome gen-
erated according to Q.

Lemma 3.34. For all P, Q,

0 ≤ S(P, Q) ≤ log |J | .

Proof. For all y, we have 0 ≤ H(J |Y = y) ≤ log |J |. S is defined as an
expectation of such entropies, and expectations preserve bounds.

Lemma 3.35. If Q is a point-distribution then

S(P, Q) = 0.

Proof. If Q is a point-distribution, then the random variable J is a constant.
The entropy of a constant is zero, and the expectation of zero is zero.

In the definition of Q-similarity, the mixing weights over the codes are given
by Q. To obtain a general measure of similarity, we take the worst-case Q-
similarity. That is, we maximise the similarity over all possible mixing weights.

Definition 3.36. Let P =
〈
Pj

〉
j∈J

be as before. We define the similarity of P

by

S(P) = max
Q

S(P, Q) (3.31)
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We believe that there is a connection to the information channel capacity
(see [CT90, p.184]), defined by

C := max
Q on J

I(J ; Y ) (3.32)

= max
Q on J

(
H(J) − EY

[
H(J |Y )

])
(3.33)

Intuitively, the distribution Q that attains the maximum in (3.31) minimises the
average amount of information that the outcome Y transmits about its origin
J . The exact relation is a matter for future research.

3.6.1 Koolen distance

We obtain a binary measure of similarity by instantiating (3.31) with J = {1, 2}.
By Lemma 3.34, the binary similarity takes values between 0 and 1. We now
consider its opposite, which we baptise the Koolen distance, and abbreviate to
K-distance. It is given by

dK(P1, P2) := 1 − S
(
{P1, P2}

)

= 1 − max
Q on {1,2}

EY

[
H(J |Y )

]
.

(3.34)

This definition raises two natural questions. First: is dK a metric? We will
show that it satisfies minimality and symmetry, but that it violates the triangle
inequality. Second: how does the K-distance relate to the Kullback-Leibler
divergence (Definition 2.25), a well-known distance on probability distributions?
We provide a partial answer in the form of graphical examples.

3.6.2 Metric

Definition 3.37. A function d : X × X → R+ is called a metric if for all
x, y, z ∈ X the following conditions hold:

d(x, y) = 0 iff x = y (minimality) (3.35)

d(x, y) = d(y, x) (symmetry) (3.36)

d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality) (3.37)

We show that dK satisfies minimality and symmetry, but violates the triangle
inequality.

Theorem 3.38. By definition, dK is symmetric.

Theorem 3.39. dK(P1, P2) = 0 iff P1 = P2.

Proof. Suppose dK(P1, P2) = 0. Then maxQ EY

[
H(J |Y )

]
= 1. Let Q be a dis-

tribution on {1, 2} that achieves Q-similarity one. By Lemma 3.35, Q(1), Q(2) >
0. One is the maximum achievable entropy on a 2 element set, hence for each
y in the support of either P1 or P2, we have H(J |Y = y) = 1. Only the
uniform distribution on {1, 2} has entropy 1, hence Q(1)P1(y) = Q(2)P2(y).
As this holds for all y in the support of P1 or P2, we conclude P1 = P2 and
Q(1) = Q(2) = 1/2.
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Theorem 3.40. dK(P1, P2) violates the triangle inequality.

Proof. Consider the following counterexample. Let Y be a two-element set. Let
P1 place all probability on the first element, P2 be uniform, and P3 place all
probability on the second element. Then we have

P1 = 〈1, 0〉 dK(P1, P2) ≈ 0.3058 (3.38)

P2 =
〈

1
2 , 1

2

〉
dK(P2, P3) ≈ 0.3058 (3.39)

P3 = 〈0, 1〉 dK(P1, P3) = 1 (3.40)

Clearly, dK(P1, P3) > dK(P1, P2) + dK(P2, P3).

As an illustration, Figure 3.5 shows the iso-similarity curves for some dis-
tributions on three outcomes. Obtaining the least favourable distribution now
is equivalent to finding the distributions within the convex hulls of the models
that are most similar. Of course, for truth finding, the distribution Q that at-
tains the maximum similarity is also of importance, as it is used as the prior on
models.

3.6.3 K-distance and KL-divergence

The Kullback-Leibler divergence, D, is also not a metric. It violates both sym-
metry and the triangle inequality. The asymmetry of the KL-divergence can be
extreme. When P2 is a point-distribution while P1 is not, then D(P1‖P2) = ∞,
while 0 < D(P2‖P1) < 1.

We show two graphical examples, Figure 3.6 and Figure 3.7. In both we use
the Bernoulli model, because specification of a Bernoulli distribution requires
a single parameter. In Figure 3.6, we show a contour plot of the K-distance
and the KL-divergence. The asymmetry of the KL-divergence is clearly visible.
Then, in Figure 3.7, we show both K-distance and KL-divergence in a single
graph, for several P1, as a function of P2.

3.7 Discussion

This section collects various observations about the truth-finding problem.

3.7.1 Equaliser strategies

Consider the case when T is finite. Then the convex hull of each model is
closed. We have shown that there is a minimax strategy f for Learner, and a
least favourable distribution PΘ for Nature. Let V be the value of the truth-
finding game. Then for all θ we have

R(θ, f) ≤ V,

with equality if θ is in the support of PΘ. Hence f is almost an equaliser strategy.
It guarantees risk exactly V for the possible worlds that Nature uses in the least
favourable distribution, and at most V for all other worlds.
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Figure 3.5 Iso-similarity graphs

Figure 3.6 K-distance vs KL-divergence I. Contour lines of both loss measures
on the Bernoulli model. The vertical axis shows P1(H), the horizontal axis
P2(H).
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Figure 3.7 K-distance vs KL-divergence II. Graphs of dK(P1, P2) (solid) and
D(P1‖P2) (dotted) as a function of P2(H).
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0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(d) P1(H) = 3/10

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(e) P1(H) = 2/5

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

2

(f) P1(H) = 1/2

0.2 0.4 0.6 0.8 1

0.25

0.5

0.75

1

1.25

1.5

1.75

2

3.7.2 Log loss non-decomposability

We have used the log loss as an integral part of our exposition. In particular,
we have regarded the probability distribution that Learner plays at the end of
the truth-finding game as part of a pure strategy. It may seem that equivalently,
we can use a loss function that is defined directly on models, and let Learner

choose models instead of distributions, and then play a mixed strategy. This is
not the case. Recall that the log loss is defined by

L(M,m) := − logm(M).

We claim that there is no loss function d : M × M → R such that

∀m∀M : L(M,m) = EM∼m

[
d(M, M)

]
.

Consider the following two simplified belief games on a finite set M:

G1 =
〈
M, D(M), L

〉
and G2 = 〈M, M, d〉 .

In both games, Nature picks an element M ∈ M, which we call the truth.

1. Learner picks, as a pure strategy, a distribution m ∈ D(M). We say that
Learner puts his belief on the table. The loss for Learner is given by the log
loss.

2. Learner picks, as a pure strategy, a model M ∈ M. We say that Learner

makes a guess. The loss for Learner is given by d(M,M′). Of course,
Learner can also play a mixed strategy, that is, a distribution m ∈ D(M).
His risk is then given by

R(M,m) = EM∼m

[
d(M, M)

]
.

Theorem 3.41. There is no function d such that game 1 is identical to game 2.
Formally, for every function d : M ×M → R, and for every strategy M ∈ M for
Nature, there is a strategy m1 for Learner in game 1 such that for all strategies
m2 for Learner in game 2 we have L(M,m1) 6= R(M,m2).
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Proof. Let d be a function as above, and pick an arbitrary strategy M ∈ M for
Nature. Let m = maxM′ d(M,M′) and m′ = max(0, m). Then define

m1(M
′) =





2−m′−1 if M′ = M,

1−2−m′−1

|M|−1 otherwise.
(3.41)

It is clear that for all m2 ∈ D(M), R(M,m2) ≤ m′, but on the other hand our
definition of m1 ensures L(M,m1) = − logm(M) = − log 2−m′−1 = m′+1.

3.7.3 Truth-finding in context

In this chapter, we have introduced truth finding as a framework of learning.
Two other important frameworks for learning are prediction and compression.
As an important first step toward understanding the relations between these
three frameworks, we provide an exposition of assumptions and performance
criteria of each.

Let X be a finite alphabet. We write Xω for the set of infinite sequences
over X . Let let P ∗ be a probability measure on Xω, called the truth. Let
〈Xi〉i<ω be discrete random variables, Xi giving the i-th outcome. We will be
concerned with prefixes of outcomes. We define the random variable Xn by
Xn(x) :=

〈
Xi(x)

〉
i<n

and abbreviate xn := 〈xi〉i<n. We assume for simplicity
that n is fixed. The above three frameworks are formalised as follows.

Prediction Given Xn = xn, produce a probability measure P on the next
outcome Xn+1. Then observe xn+1, the next outcome. The loss of P is given by
− logP (Xn+1 = xn+1). The risk of P , after observing xn but before observing
xn+1, is given by EP∗

[
− log P (Xn+1) | Xn = xn

]
. More generally, let P (·|Xn =

xn), with abuse of notation, be a function that assigns a probability measure
on X to each n-sequence. Then the overall risk of P is given by

EP∗

[
− logP (Xn+1|X

n)
]
.

Compression Produce a probability measure P on infinite sequences, then,
given Xn = xn, the loss of P is given by the compressed length of xn, that is,
− logP (Xn = xn). The risk of P is given by

EP∗

[
− log P (Xn)

]
.

Truth finding Assume that T is a measurable space, with P ∗ ∈ T . Let
〈Mi〉i<m be a family of disjoint events that cover T , and let M∗ be the unique
such event that contains P ∗. Given Xn = xn, produce a probability measure
P on T . The loss of P is given by − logP (M∗). Again more general, let
P (·|Xn = xn) be a function that assigns a probability measure on T to each
n-sequence. Then the overall risk of P is given by

EP∗

[
− logP (M∗|Xn)

]
.
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Figure 3.8 Three types of learning

Goal Type Risk

Prediction P : Xn → D(X ) EP∗

[
− log P (Xn+1|Xn)

]

Compression P ∈ D(Xn) EP∗

[
− log P (Xn)

]

Truth finding P : Xn → D(T ) EP∗

[
− log P (M∗|Xn)

]

Comparison Note that each framework expresses losses and risks in idealised
bits, the unit of uncertainty. This is to be expected from a statistical learn-
ing framework. Prediction and compression are most easily related; prediction
equals compression of the next outcome, with complete knowledge of the past.
In other words, the loss of prediction is the discrete derivative of the loss of
compression. Prediction can be based on a probability measure P ′ on Xω by
using P (X = x|Xn = xn) = P ′(Xn+1 = x|Xn = xn), where the latter is a
proper conditional probability. The best compressors are not necessarily the
best predictors and vice versa, as is shown in [vE06].

In practice, prediction and compression are often based on Bayesian universal
models. The following section discusses the relation between truth finding and
Bayes.

3.7.4 Truth-finding and Bayes

Procedurally, a Bayesian approach to any inference (i.e. learning) problem con-
sists of three steps.

1. Obtaining a prior distribution on possible states of nature. In the case of
truth finding, these are the possible worlds.

2. Updating the prior distribution using data, obtaining the so-called poste-
rior distribution.

3. Using the posterior distribution to make the required inferences. In truth
finding, this means producing a distribution on models.

Our solution to the worst-case truth-finding problem is Bayesian, according to
this definition. This is surprising, as we perform a worst-case analysis, which ex-
plicitly disregards any prior belief. Of course, philosophically, our truth-finding
solution is not Bayesian.

A Bayesian constructs a prior distribution that reflects his prior belief about
the actual world. Consequently, his choice will not depend on the number of
outcomes that he is going to observe. Moreover, in the absence of specific prior
knowledge, one would consider most worlds possible, and would not have any
strong preference for one world over another, which a Bayesian would reflect in
a smooth, fairly uniform prior.

The prior distribution on possible worlds that we obtain for truth finding is
the least favourable distribution. This distribution is a mixed strategy for Na-

ture. We use this prior distribution, because the minimax strategy for Learner

happens to coincide with the optimal response to the least favourable distribu-
tion. The least favourable distribution depends on all components of the truth-
finding frame, and, in particular on the number of observations that Learner will
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receive from Chance. Furthermore, the least-favourable distribution is particu-
larly non-uniform and non-smooth. For closed convex models, we have shown
that its support contains exactly one (!) point per model, the most similar
points of §3.6.

Our worst-case analysis of the truth-finding problem provides ample motiva-
tion for using the least favourable distribution. In particular, it provides the best
guaranteed bounds on loss, even when it is not true. Our method constructs a
distribution on models from data, using the least-favourable distribution as a
prior. The probabilities that we assign to models can always be interpreted as
code lengths, expressing our uncertainty about the true model. If Nature does
play worst-case optimal, i.e. using the least favourable distribution, then the
probability that we assign to each model is its conditional probability given the
data. Only if the least favourable distribution corresponds to the prior belief
of a true Bayesian can our distribution on models be regarded as the Bayesian
posterior distribution.

3.8 Conclusion

In this chapter, we introduced truth finding. We formalised it as the truth-
finding problem: given a list of models, use data sampled from reality to obtain
as much information as possible about the true model in the worst case. We re-
formulated the truth-finding problem as a game between Nature and Learner. We
first gave the extensive form of this game, and then transformed it into normal
form. We showed how strategies for both players can be represented. Strategies
for Learner equal stochastic matrices. Strategies for Nature can be identified
with distributions from the convex hull of the models, weighted according to a
prior on models. We proved that the truth-finding game has a value, and that
Learner has a minimax strategy. Then we showed that this minimax strategy
can be obtained from the least favourable distribution for Nature, which can be
obtained by optimising the generalised entropy function. We proved that this
function is concave, hence the optimisation problem is easy. To find the least
favourable distribution for Nature, we need to find similar distributions, one
from the convex hull of each model. We extracted a formal definition of simi-
larity from the truth finding setting, which seems very natural. We formulated
it in general terms for future research. We related truth finding to prediction
and compression, regarded truth finding from a Bayesian perspective. Although
conforming to Bayesian practice, we showed that truth finding violates Bayesian
philosophy in several ways.

3.8.1 Open questions

• Can a distribution on models, obtained by truth finding, be used for pre-
diction? If so, how, and is it any good?

• What is the exact relation between the closed convex hull and extended
Bayes distributions?

• What happens when there is no common world in all models, but a subset
of the models does intersect? How trivial is that problem?
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• We have analysed truth finding with the log loss. Are there other natural
loss measures for truth finding, and if so, how do the obtained distributions
on models differ?

• How exactly is similarity related to channel capacity?

49



Chapter 4

Experiment design

The previous chapter introduced truth finding. In truth finding, the data are
considered given. This chapter discusses the extension of truth finding with
experiments, called experiment design. Here, the data are obtained as outcomes
of experiments, and the learner can select which experiment is performed.

We show that, once the selection of experiments has been fixed, the re-
maining problem is an instance of the truth-finding problem. We covered the
truth-finding problem in Chapter 3. In this chapter, we will be concerned with
the selection of experiments. For simplicity, we first cover the case where only
a single experiment can be performed. We will show that performing many
experiments in parallel is covered by this case. Then we will turn to the more
interesting case of truly sequential experiment design.

The structure of this chapter parallels the development of Chapter 3. In
§4.1, we introduce the two examples that motivated this research: polynomial
regression and the balance scale. Then, in §4.2 we formalise the arena of the
experiment-design problem as the experimentation frame. We introduce the
experimentation game in §4.4. We solve the experiment-design problem, i.e.
obtain the minimax strategy for Experimenter, in two stages. First, in §4.5 we
consider pure and mixed single-experiment strategies. Then, in §4.6 we turn to
pure and mixed sequential strategies. In each of these four cases, we show that
an experimentation strategy for Experimenter induces a truth-finding subgame,
and explicitly extract its arena, the induced truth-finding frame. We conclude
and summarise in §4.8, and give directions for future research.

4.1 Examples

We start by introducing two examples. These examples will be revisited in §4.7.
Each example contains the following components.

• A set of outcomes

• A set of possible worlds

• A classification of possible worlds into models.

• A set of experiments
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• Experimental mechanics, conveniently represented here by

– A regression function

– Noise

The first three are also used in truth finding. The set of experiments is the
new ingredient for experiment design, and the experimental mechanics replace
the (ordinary) mechanics of truth finding. Experimental mechanics specify the
distributions of outcomes given experiments.

4.1.1 Polynomials

We are given an interval, say [−1, 1], and a (possibly infinite) set of polynomials.
We assume that a certain polynomial from this list is the true (but unknown)
polynomial, and that it is our task to learn the answer to a specific question
about this polynomial. We consider the following natural questions.

• Identity: which polynomial is it?

• Degree: what is the highest exponent occurring with non-zero coefficient?

• Parity: is the degree even or odd?

Each question induces an equivalence relation on the set of polynomials, relating
the polynomials with identical answers. The equivalence classes form a partition
of the set of polynomials; in our setting we call them models. Hence answering
such a question amounts to finding the true model.

To be able to discover the answer to one of these questions, we can perform
experiments thus: first we pick a point ξ in the given interval, and then we
receive the value Y of the polynomial θ at the given point, perturbed by nor-
mally distributed noise. This statement is formalised by the following regression
relation:

Y |θ, ξ ∼ θ(ξ) + N(0, σ2). (4.1)

Here N(µ, σ2) is the standard normal distribution with mean µ and variance σ2.
Note that under this noise function — whichever polynomial is the truth — any
outcome is possible, though large deviations from the mean are very unlikely.
This means that there will always be uncertainty in our inferences.

4.1.2 Balance scale

This example is based on a well-known riddle, where, using a balance scale, one
has to find the odd ball among twelve indistinguishable balls. We are given 12
numbered balls and a classical balance scale, like the one shown in Figure 4.1.
We are given for a fact that exactly one of the balls is heavier or lighter than
all the others. We are to the answer to one of the following questions through
experiment:

• Index: which ball is the odd ball?

• Weight: is the odd ball heavier or lighter?

• Both: which ball is odd, and is it heavier or lighter?
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An experiment is performed by placing some balls in the left scale pan, and
placing equally many different balls in the right scale pan. The observed outcome
is one of left, even and right. For example, left means that the scale
indicates that the content of the left scale pan is heavier than that of the right
scale pan.

Let L, R be disjoint equinumerous sets of balls, and let i and w be the index
and the weight of the odd ball. Then the true outcome of the balance scale,
when the balls in L and R are placed in the left and right scale pan, is given by
the following regression function:

ri,w(L, R) :=





left if i ∈ L and w = heavy,

left if i ∈ R and w = light,

right if i ∈ R and w = heavy,

right if i ∈ L and w = light,

even otherwise.

(4.2)

It is a classical puzzle problem to find both the index and the weight of the
odd ball using three sequential experiments.1 To make the problem harder, we
assume that the observations are noisy. This might be caused, for example,
by wind. We assume that the probability of observing each outcome is related
to the truth by an error matrix, a 3 × 3 matrix that specifies a probabilistic
function from true outcomes to observed outcomes. Examples of error matrices
are shown in Figure 4.2.

4.2 Formalisation

We formalise the setting described in the introduction to this chapter. Then we
give the formal statement of the experiment-design problem.

4.2.1 Frames

Definition 4.1. A quintuple

F =
〈
Y, T , M, Ξ,

〈
pθ,ξ

〉
θ∈T ,ξ∈Ξ

〉

is called an experimentation frame, or frame for short, if the following conditions
hold:

Figure 4.1 Balance scale

1An online statment of and solution to this puzzle is given http://www.iwriteiam.nl/

Ha12coins.html.
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Figure 4.2 Two error matrix examples
(a) Uniform error

outcome
left even right

tr
u
th left 0.8 0.1 0.1

even 0.1 0.8 0.1
right 0.1 0.1 0.8

(b) Neighbour error

outcome
left even right

tr
u
th left 0.9 0.1 0

even 0.1 0.8 0.1
right 0 0.1 0.9

• Y is a sample space, called the outcome space. We refer to the elements
of Y as outcomes.

• T is a sample space, called the possible world space.. We refer to the
elements of T as possible worlds.

• M is a partition of T , called the set of models.

• Ξ is a set. We refer to the elements of Ξ as experiments.

• pθ,ξ is a probability distribution on Y for each possible world θ and ex-
periment ξ. We write p(y|θ, ξ) for pθ,ξ(y). We call

〈
pθ,ξ

〉
θ∈T ,ξ∈Ξ

the

experimental mechanics.

The requirements on the first three components are exactly the same as for
truth-finding frames, which are defined in §3.1.1. The set of possible worlds
contains all the different states of nature that we consider. We do not know
what reality is, but we assume that we can always perform any of the given ex-
periments. When performing an experiment, the outcome depends on chance,
but moreover, the generating distribution depends on the actual world through
the experimental mechanics. This dependence, which is modelled by the exper-
imental mechanics pθ,ξ, is key to discovery.

4.2.2 Experiment-design problem

The experiment-design problem can now be succinctly stated thus: given an
experimentation frame F, choose experiments intelligently, to obtain as much
information about the true model as possible. In more detail, the actual world
θ∗ ∈ T must be classified according to M. We assume no prior knowledge about
reality, but, by performing an experiment and observing its outcome, we can
obtain information about the true model. The experiment-design problem then
consists of two subproblems:

1. Choosing the experiment to perform.

2. Obtaining information about the true model from the observed outcome.

The second subproblem is solved in Chapter 3. Recall that to measure the
amount of information that the learner has about the true model, we use the
log loss. The first subproblem is the central problem of this chapter.
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4.2.3 Formalisation of the examples

A concise summary of the examples is given in Table 4.1. We explicitly list all
the components of the experimentation frames for the polynomial example, and
for the balance scale example. In §4.7.1 we describe how an experimentation
frame is obtained from a regression function and noise.

4.3 Assumptions

The assumptions that are relevant to truth finding, as given in §3.1.4, remain
relevant for experiment design. In addition, we must assume |Ξ| ≥ 2 for there to
be an experiment-design problem. We add the following assumption to simplify
analysis.

Assumption 4.2. The set of experiments Ξ is finite.

This assumption is satisfied by Example 1.2, the anvil drop, from the in-
troduction. Here the number of experiments is six, the number of floors of the
Tower of Pisa. The balance scale example also has a finite number of experi-
ments, namely

6∑

i=0

(
12

i, i, 12 − 2i

)
= 73789.

In the case of polynomials, the number of experiments is uncountable. There,
we need to approximate the interval [−1, 1] using finitely many points to satisfy
the above assumption.

4.4 Experimentation game

The experiment-design problem is a worst-case optimisation task. To analyse
it, we model it as a game, which we call the experimentation game. This al-
lows us to find the solution in terms of a worst-case-optimal learning strategy.
The players in the experimentation game are called Experimenter, Nature and
Chance. Nature initially chooses the actual world, thereby fixing the true model.
Then Experimenter tries to find out as much as possible about the true model
by intelligently selecting experiments. We use the impartial player Chance to
model the generation of an outcome for each experiments. Experimenter per-
forms several experiments sequentially. This means that his choice of the next

Table 4.1 Overview of examples

Polynomials Balance scale

Outcomes Y = R Y = {left, even,right}
Possible worlds T ⊆ R∗ T = [1 . . . 12] × {heavy, light}
Models identity, order identity, index, weight, colour

parity

Experiments Ξ = [0, 1] Ξ =
{
〈L, R〉 | L ∩ R = ∅ ∧ |L| = |R|

}

Regression fn. θ ∈ T ri,w

Noise N(0, σ2) error matrix
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experiment may depend on all previous data: experiments and outcomes. After
all experiments have been performed, we measure the amount of information
that Experimenter lacks about the true model using the log loss.

The protocol of the experimentation game is shown in Protocol 4.1. Its
extensive form is illustrated in Figure 4.3, where we show the game tree for the
case where a single experiment is performed. Note that Experimenter makes a
move twice. On the second level of the tree, Experimenter chooses an experiment.
On the fourth level, he expresses his belief about the true model as a distribution
on models. Information sets, i.e. clusters of positions thar are indistinguishable
to Experimenter, are indicated by dotted lines.

To solve for the worst-case-optimal strategy for Experimenter, we transform
the experimentation game into normal form. We first discuss the pure strategies
that both players have at their disposition. Our approach is similar to that
of [GD04] and [Fer67], although our games have much richer internal structure.

We proceed as follows. In §4.5 we cover the simple case n = 1, where
Experimenter performs a single experiment. We then turn to truly sequential
experimentation in §4.6. In each case, a strategy for Experimenter consists of two
parts. We call the first part the experimentation strategy, and the second part
the learning strategy. The experimentation strategy dictates which experiments
will be performed in each execution of step 3 of Protocol 4.1.

We will show that, once the experimentation strategy has been fixed, the
remaining subgame is an instance of the truth-finding game. Experimenter’s
learning strategy is the strategy that he wields on this subgame, and his loss
on the expermentation game as a whole coincides with his loss on the induced
truth-finding subgame. In §3.4.2 we proved that the truth-finding game has
a value, and showed how to compute a minimax strategy. This perspective
allows us to choose the optimal learning strategy for Experimenter, once the
experimentation strategy has been fixed.

Protocol 4.1 The experimentation game

Arena: Experimentation frame F =
〈
Y, T , M, Ξ,

〈
pθ,ξ

〉
θ∈T ,ξ∈Ξ

〉
.

Require: Number of experiments n.
1: Nature covertly chooses a hypothesis θ∗. Say M(θ∗) = M∗.
2: for n turns do

3: Experimenter chooses an experiment ξ.
4: Chance generates an outcome y according to pθ∗,ξ.
5: end for

6: Experimenter expresses his belief as a probability distribution m on models.
Loss: Experimenter suffers − logm(M∗).

4.5 Single experiment

The basis of game-theoretic analysis is the pure strategy. The strategies for
Nature in the experimentation game are the same as those in the truth-finding
game: Nature plays a possible world. In this section, we analyse the experimen-
tation game in case only a single experiment is allowed. We first describe pure
strategies for Experimenter, and provide a method to find the minimax strat-
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Figure 4.3 Experimentation game tree for n = 1
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egy. We then show that Experimenter must consider mixed strategies, by giving
an example where Experimenter can, using mixed strategies, obtain substantially
lower risk than when using pure strategies. Finally, we describe mixed strategies
for Experimenter, and give references to known methods to obtain the minimax
mixed strategy.

4.5.1 Pure strategies for Experimenter

In the experimentation game, Experimenter moves twice. In his first turn, he
chooses an experiment. Then, for each possible outcome, he must produce a
distribution on models in his second turn.

Definition 4.3. A pair 〈ξ, f〉 is called a pure strategy for Experimenter if

• ξ ∈ Ξ. We call ξ the experimentation strategy.

• f : Y → D(M). We call f the learning strategy.

The pure strategy 〈ξ, f〉 instructs Experimenter to perform experiment ξ, and to
subsequently, on observing outcome y, report the distribution f(y) on models.

We can now define Experimenter’s risk for the play θ vs 〈ξ, f〉.

Definition 4.4. Let θ and 〈ξ, f〉 be pure strategies for Nature and Experimenter.
The risk of the play θ, 〈ξ, f〉 is given by

R
(
θ, 〈ξ, f〉

)
:= E

Y ∼pθ,ξ

[
L

(
θ, f(Y )

)]
. (4.3)

This risk has a clear interpretation: it is the expected amount of information
about the true model, expressed in bits, that Experimenter still lacks after ob-
serving the outcome of experiment ξ.

The difference between the truth-finding risk (3.3) and the experiment-design
risk (4.3) is the presence of the experiment parameter in the distribution over
which the expectation is taken. If we fix ξ, then this difference disappears.
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Definition 4.5. Let F be an experimentation frame, and fix ξ ∈ Ξ. Then the
ξ-subframe of F is given by

Fξ :=
〈
Y, T , M, 〈pθ,ξ〉θ∈T

〉
. (4.4)

Obviously, Fξ is a truth-finding frame, where the outcome that the learner
obtains is actually the outcome of experiment ξ.

Recall from §3.4.2 that the truth-finding game on F has a value, which we
denote by V(F). This means the following (using Rtf for the truth-finding risk)

sup
PΘ

inf
f

Rtf(PΘ, f) = V(F) = inf
f

sup
PΘ

Rtf(PΘ, f).

The following theorem reduces the experiment-design problem to a number of
truth-finding problems on subframes. Note that we allow Nature to play mixed
strategies, and we use the convention that the risk function, when applied to a
probability distribution, is interpreted as the expected risk.

Theorem 4.6. For all ξ ∈ Ξ,

inf
f

sup
PΘ

R(PΘ, 〈ξ, f〉) = V(Fξ).

Proof. By definition.

For each experiment ξ ∈ Ξ we can, using Chapter 3, compute the corre-
sponding minimax strategy fξ in the truth-finding game on Fξ. Hence the
experiment-design problem with pure strategies for Experimenter is a finite op-
timisation problem. Experimenter is faced with |Ξ| many choices, each choice
leading to an essentially unrelated2 instance of the truth-finding game on a sub-
frame. To find the overall minimax strategy, Experimenter computes the value of
the truth-finding game on each subframe, and chooses an experiment for which
the resulting truth-finding risk is least.

The algorithm that is sketched in the previous paragraph computes the mini-
max pure strategy for Experimenter, thereby solving the experiment-design prob-
lem restricted to pure strategies. Unfortunately, this is of little use, as playing
mixed strategies can be significantly better for Experimenter.

4.5.2 The necessity of mixed strategies

The following example illustrates that Experimenter can reduce the worst-case
risk by using mixed strategies, even when only a single experiment is performed.
Mixed strategies will be worked out in detail in the next section.

Example 4.7 (Bribed jury). Consider a judge — our Experimenter — that
wants to know whether the jury has been bribed. There are two shady members
within the jury, call them A and B. To fix the jury’s verdict, it suffices to bribe
a single member. The judge has the power to command a search on one of
them. A search can either yield incriminating evidence, say a lot of cash, or no

2In theory, the experimental mechanics can be completely unrelated for all possible worlds and
all experiments. In practical applications, however, the experimental mechanics are often not
arbitrary, and relations between different subframes abound.
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such evidence. We set Y = {cash,nothing}. The possible worlds are given by
T =

{
A, B, ∅

}
, where we use ∅ for no bribe. The models are given by

M1 = {A, B} bribed jury (4.5)

M2 =
{
∅
}

fair jury (4.6)

We call the experiments A, and B. The experimental mechanics are given by

p cash nothing

A
A 1 0
B 0 1

B
A 0 1
B 1 0

∅
A 0 1
B 0 1

Now say the judge commits herself to A, that is, she will have jury member
A searched. Now the worst that can happen is that Nature plays the uniform
distribution on

{
B, ∅

}
. The judge’s experiment will yield no information, and

the best she can do is just guess blindly between M1 (bribed jury) and M2

(fair jury), incurring loss 1. Analogously, if she commits to performing B, she
will obtain no information in the worst case.

On the other hand, if the judge uses the uniform distribution on {A,B}, then
the risk of her minimax truth-finding strategy is only 0.6942. By symmetry of
the experimental mechanics, the uniform distribution on experiments must be
optimal for Experimenter. The least favourable distribution for Nature, and
Experimenter’s best response are shown in Figure 4.4. Figure 4.5 shows the
shape of the generalised entropy surface, which will be explained in the next
section.

4.5.3 Mixed strategies for Experimenter

A mixed strategy is a probability distribution on pure strategies. Let PF be
a mixed strategy for Experimenter. Such a strategy has the following interpre-
tation. Take 〈ξ, f〉 from the support of PF . Then with probability PF (〈ξ, f〉),

Figure 4.4 Bribed jury example optimal strategies. (a) shows Nature’s worst-
case-optimal distribution on possible worlds. Note that both the prior on worlds
and the derived prior on models are non-uniform. (b) shows the optimal exper-
imentation strategy for Experimenter. (c) shows the optimal learning strategy
for Experimenter.

(a) Nature

θ PΘ(θ)

A 0.2765
B 0.2765
∅ 0.4470

(b) Experimenter

ξ ξ(ξ)

A 1/2
B 1/2

(c) Experimenter

ξ y m(M1) m(M2)

A cash 1 0
A nothing 0.3822 0.6178
B cash 1 0
B nothing 0.3822 0.6178
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Figure 4.5 Generalised entropy for Bribed Jury. To reduce dimensionality, we
fixed PΘ(M1) = PΘ(M2) = 1/2. Both (a) and (b) show H(PΘ, ξ) as a function
of PΘ(A|M1) and ξ(A). Linearity of H(PΘ, ξ) in ξ for fixed PΘ can be seen in
(a), because for each PΘ, the graph is a straight line. It can also be seen in (b)
where the intersection of the contour lines with any horizontal line yields a set
of equidistant points. (c) shows the point-wise maximum for Nature (solid) and
minimum for Experimenter (dotted).
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Experimenter will perform experiment ξ, and subsequently use f in the truth-
finding problem on Fξ. The risk for mixed strategies is obtained by taking
expectations over (4.3).

Definition 4.8. Let PΘ, PF be mixed strategies for Nature and Experimenter.
The risk of the play PΘ, PF is given by

R(PΘ, PF ) := E
Θ∼PΘ

E
〈X,F 〉∼PF

E
Y ∼pΘ,X

[
L(Θ, F (Y ))

]
(4.7)

Here, 〈X, F 〉 is a random variable, ranging over strategies for Experimenter, that
is distributed according to Experimenter’s mixed strategy PF . By Definition 4.3,
X is an experiment, and F is a learning strategy, i.e. a function that, given data,
produces a distribution on models. Θ, the actual world, is distributed according
to Nature’s mixed strategy PΘ.

In §3.2.5, we showed that it is never beneficial for Learner to use a mixed
strategy in the truth-finding game. So without loss of generality, we can restrict
attention to mixed strategies PF that have functional support. A mixed strat-
egy PF has functional support if for each experiment ξ with positive marginal
probability, the conditional distribution PF (F |X = ξ) assigns all its probabil-
ity to a single learning strategy. We call the unique such learning strategy fξ

(When ξ has zero marginal probability, we can choose any fξ). Using this, the
risk simplifies to

R(PΘ, PF ) = E
Θ∼PΘ

E
X∼PF

E
Y ∼pΘ,X

[
L(Θ, fX(Y ))

]
.

We have decomposed a mixed strategy in a probabilistic component, the
generation of the experiment, and a deterministic component, the selection of
the distribution on models. The distribution on models is chosen as a function
of both the experiment and the outcome. The following definition makes this
decomposition explicit.

Definition 4.9. A mixed strategy for Experimenter in simple form is a pair
〈ξ, f〉, where ξ ∈ D(Ξ), and f : Ξ × Y → D(M).

A mixed strategy PF can be simplified thus:

ξ(ξ) := PF (ξ), (4.8)

f(ξ, y) := fξ(y). (4.9)

Our final simplification of the loss can now be given.

Definition 4.10. When PΘ is a mixed strategy for Nature, and 〈ξ, f〉 is a mixed
strategy for Experimenter in simple form, then the risk of the play PΘ, 〈ξ, f〉 is
given by

R(PΘ, 〈ξ, f〉) = E
Θ∼PΘ

E
X∼ξ

E
Y ∼pΘ,X

[
L(Θ, f(X, Y ))

]
. (4.10)

For fixed ξ, we arrive at the following crucial observation: the experiment-
design risk (4.10) is equal to the truth-finding risk (3.5), when we regard the
experiment as part of the data. The innermost two expectations of (4.10) specify
that Chance draws a pair 〈X, Y 〉, and this pair is subsequently provided to f
to determine the distribution on models. The following definition integrates the
experiment into the data.
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Definition 4.11. Let F be an experimentation frame, and ξ a distribution on
Ξ. Then the ξ-reduct of F is given by

Fξ :=
〈
Y × Ξ, T , M, 〈pξ

θ〉θ∈T

〉
, (4.11)

where for each possible world θ, the distribution p
ξ
θ on Y × Ξ is defined by

p
ξ
θ(y, ξ) := pξ,θ(y)ξ(ξ).

Again, Fξ is a truth-finding frame. This definition generalises Definition 4.5 in
the following way. If we take a distribution ξ that concentrates all probability on
a single experiment ξ, then for all θ ∈ T and y ∈ Y we have pθ,ξ(y) = p

ξ
θ(ξ, y).

The data in the ξ-reduct Fξ are experiment/outcome pairs, while the data in the
ξ-subframe Fξ are just outcomes. Other than that, their behaviour is identical
for point distributions.

We put this definition to use in the following generalisation of Theorem 4.6.

Theorem 4.12. For all ξ,

inf
f

sup
PΘ

R(PΘ, 〈ξ, f〉) = V(Fξ).

Proof. As the reader may check, this is purely a matter of definition.

We are interested in finding the minimax experimentation strategy for Ex-

perimenter. Using the above simplification, we need to find the ξ that attains

inf
ξ

V(Fξ) = inf
ξ

inf
f

sup
PΘ

R(PΘ, 〈ξ, f〉) (4.12)

We now apply the two results of Chapter 3: the minimax theorem for truth-
finding (see §3.4.2), and the derivation of the game value in terms of the gener-
alised entropy function (see §3.5.2). We obtain:

inf
ξ

V(Fξ) = inf
ξ

sup
PΘ

H(PΘ, ξ), (4.13)

where we denote by H(PΘ, ξ) the doubly generalised entropy, which, for each ξ, is
defined as the generalised entropy in the truth-finding game on the ξ-reduct Fξ.
One can easily adapt the formula that we obtained for the generalised entropy
(3.19) to:

H(PΘ, ξ) = E
X,Y

[
H(M |X, Y )

]
(4.14)

= H(M) − I(M ; X, Y ), (4.15)

where the discrete random variables M, X and Y are jointly distributed accord-
ing to

P(M, ξ, y) = ξ(ξ)

∫

M

p(y|θ, ξ)PΘ(dθ).

The previous lines cannot be reduced further; the doubly generalised entropy
function inextricably intertwines the mixed strategies for Nature and Experi-

menter. In Chapter 3 we used concavity of the generalised entropy function to
obtain the minimax strategy for Learner. Unfortunately, the doubly generalised
entropy function is not concave. Still, it is of a sufficiently manageable kind, as
shown by the following theorem.
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Theorem 4.13. The generalised entropy H is concave-linear, i.e. H(PΘ, ξ) is

1. a concave function of PΘ for fixed ξ, and

2. a linear function of ξ for fixed PΘ.

Proof. We cover each claim separately.

1. Theorem 3.27.

2. Rewrite the generalised entropy as

H(PΘ, ξ) = E
X

E
M,Y |X

[
− log

P(Y, M |X)

P(Y |X)

]
(4.16)

and observe that only the outermost expectation depends on ξ.

A linear function is both concave and convex, so H is both concave-convex
and concave-concave, the latter also being called separately concave. Theo-
rem 4.13 does not imply that H is concave. In all but the most trivial cases it
is not; see Figure 4.5 for a counterexample.

By (4.13), to find the minimax experimentation strategy we need to find
the saddle-point of the doubly generalised entropy function. There is a re-
spectable amount of literature on concave-convex functions. An overview is
given in [BV04]. This book contains conditions under which a concave-convex
function has a saddle-point. The authors describe two classes of algorithms to
find this saddle-point, called Newton methods and Barrier methods. The method
that can be applied to our setting depends on the structure of the models. We
did not explicitly try this; deeper research into this subject matter is planned
for future work.

4.5.4 Bayesian Maximum Entropy Selection

By (4.14), the minimax optimal experimentation strategy is the strategy ξ that
attains

inf
ξ

sup
PΘ

H(PΘ, ξ) = inf
ξ

sup
PΘ

E
X,Y

[
H(M |X, Y )

]
.

A Bayesian experimenter has her own means of establishing a prior distribution
PΘ for Nature. Fixing this distribution simplifies matters considerably. The
doubly generalised entropy function is a linear function of ξ for fixed PΘ by
Theorem 4.13. This implies that the minimum will be achieved for a point-
distribution. Hence, a Bayesian can restrict attention to pure strategies, select-
ing an experiment (there could be more than one) that attains

min
ξ

EY

[
H(M |ξ, Y )

]
.

This criterion for experiment selection is known in the literature on Bayesian
experiment design by the name of Maximum Entropy Selection (MES). See for
example [SW00]. The term MES stems from the following application of the
chain rule of entropy (2.6):

H(Y, M |ξ) = H(Y |ξ) + EY

[
H(M |Y, ξ)

]
.

Under the common assumption that H(Y, M |ξ) does not depend on ξ, minimis-
ing EY

[
H(M |Y, ξ)

]
is equivalent to maximising H(Y |ξ).
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4.5.5 Multiple independent experiments

The case where multiple experiments are performed independently can easily be
reduced to the single experiment case using the following experimentation frame
construction. In most general form, n outcomes are generated by n specified,
possibly different experiments.

Definition 4.14. Let F be an experimentation frame, and n a number of out-
comes. The n-fold product frame is given by

Fn :=
〈
Yn, T , M, Ξn, 〈pn

θ,ξn〉
θ∈T ,ξn∈Ξn

〉
, (4.17)

where

pn
θ,ξn(yn) :=

n∏

i=1

pθ,ξi
(yi).

A product frame models the situation where we perform n experiments si-
multaneously. Naturally, these experiments are all performed on the same world,
as the state of nature is constant. The n outcomes are generated independently.
A product frame models experimentation in parallel. We now turn to sequential
experimentation.

4.6 Sequential experimentation

In the following, let n ≥ 2 be the number of sequential experiments. In sequen-
tial experimentation, as specified by steps 3 and 4 of Protocol 4.1, Experimenter

and Chance alternately choose an experiment and an outcome. We call the
sequence of their combined choices the data. At each position in the experi-
mentation game where Experimenter is to move, we refer to the data that have
been generated so far as the history. There is a one-to-one correspondence be-
tween histories and information sets for Experimenter in the extensive form of
the experimentation game.

4.6.1 Pure strategies for Experimenter

A pure strategy for Experimenter assigns a move — an experiment — to each non-
terminal history. Taking this literally, we obtain a viable but slightly baroque
definition of strategy, because such a strategy must assign experiments to his-
tories that can never be reached. For example, if the strategy dictates perfor-
mance of ξ1 in the empty history 〈〉, then any history that commences with
ξ2 is unreachable. Without loss of generality, we use the following compact
representation of strategies instead.

Definition 4.15. A pair 〈s, f〉 is called a pure strategy for Experimenter if

• s : Y<n → Ξ. We call s the experimentation strategy.

• f : Yn → D(M). We call f the learning strategy.

Substituting n = 1, we obtain Definition 4.3.
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In this definition of strategy we use only the outcomes that Chance generated,
instead of full histories. This causes no ambiguity as, given an experimentation
strategy s and Chance’s moves yn, one can reconstruct the conducted experi-
ments ξn ∈ Ξn and hence the entire history hn ∈ (Ξ × Y)n thus:

ξi := s
(
yi−1

)
, hi :=

〈
ξi, yi

〉
. (4.18)

Definition 4.16. When θ and 〈s, f〉 are pure strategies for Nature and Experi-

menter, then the risk of the play θ, 〈s, f〉 is given by

R(θ, 〈s, f〉) = E
Y n∼p

s
θ

[
L(θ, f(Y n))

]
(4.19)

where

ps
θ(y

n) :=

n∏

i=1

p
(
yi

∣∣θ, ξi

)
.

As in the single experiment case, a pure strategy for Experimenter induces a
truth-finding frame.

Definition 4.17. Let F be an experimentation frame, and s be a pure strategy
for Experimenter. The s-subframe of F is given by

Fs :=
〈
Yn, T , M, 〈ps

θ〉θ∈T

〉
. (4.20)

Theorem 4.18. For all learning strategies s,

inf
f

sup
PΘ

R(PΘ, 〈s, f〉) = V(Fs).

Proof. By definition.

Theoretically, to solve the sequential experiment-design problem with pure
strategies for Experimenter, we simply solve the truth-finding game on Fs for
each learning strategy s. The set of learning strategies is given by

[
Y<n → Ξ

]
,

and consequently, the number of learning strategies is

∣∣∣
[
Y<n → Ξ

]∣∣∣ = |Ξ|

“

|Y|n−1

|Y|−1

”

≤ |Ξ|(2|Y|n−1−1) ≤ |Ξ||Y|n
.

In practice, considering a doubly exponential number of strategies is infeasible,
and we need to use (a) the tree structure of each strategy, (b) the independence
of the outcomes given the experiments. We will not look into this further, as
we already know that mixed strategies for Experimenter are more powerful.

4.6.2 Mixed strategies for Experimenter

A mixed strategy for Experimenter is a probability distribution on all his pure
strategies. In the coming exposition, we prefer to use probabilistic strategies
instead of mixed strategies. A probabilistic strategy probabilistically assigns
an experiment to each history. It can easily be shown that, over finite sets,
probabilistic strategies and mixed strategies generate the same behaviour. See
for example [Fer67, p.26]. Probabilistic strategies are also called behavioural
strategies.
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Definition 4.19. A pair 〈s, f〉 is called a probabilistic strategy for Experimenter

if

• s : (Ξ × Y)<n → D(Ξ). We call s the experimentation strategy.

• f : (Ξ × Y)n → D(M). We call f the learning strategy.

Probabilistic strategies take the entire history (both experiments and outcomes)
into account. This in contrast to sequential pure strategies (Definition 4.15),
that use only the past outcomes. Here one can no longer reconstruct the exper-
iments from s and yn alone, because experiments are chosen probabilistically.
Note that for n = 1 we obtain a strategy for Experimenter in simple form (Defi-
nition 4.9).

Definition 4.20. When PΘ is a mixed strategy for Nature, and 〈s, f〉 is a
probabilistic strategy for Experimenter, then the risk of the play PΘ, 〈s, f〉 is
given by

R(PΘ, 〈s, f〉) = E
Θ∼PΘ

E
Hn∼ p

s

Θ

[
L(Θ, f(Hn))

]
, (4.21)

where Hi := 〈Xi, Yi〉, and

ps
θ(h

n) :=

n∏

i=1

p
(
yi

∣∣θ, ξi

)
s(ξi|h

i−1).

Analogously to Definitions 4.5, 4.11 and 4.17, a probabilistic strategy s in-
duces a truth-finding frame.

Definition 4.21. Let F be an experimentation frame, and s be a probabilistic
strategy for Experimenter. The s-reduct of F is given by

Fs :=
〈
(Ξ × Y)n, T , M, 〈ps

θ〉θ∈T

〉
. (4.22)

Theorem 4.22. For all probabilistic strategies for Experimenter s,

inf
f

sup
PΘ

R(PΘ, 〈s, f〉) = V(Fs).

Proof. By definition.

4.7 Examples revisited

This section discusses the examples that were introduced in §4.1. We first discuss
the polynomial example, then the balance scale example.

4.7.1 Polynomials

In the polynomial example, we want to find the degree of the true polynomial
from noisy outcomes of probes. Formulated like this, this problem might seem
hard to formalise as an expermentation frame. In this section, we show how
regression problems can be modelled in our framework in general. In regression
problems (see e.g. [GCSR04]), experimental mechanics arise from a combination
of two components: a regression function and noise.
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Definition 4.23. A function r : Ξ → Y is called a regression function.

A regression function deterministically assigns a true outcome to each ex-
periment. To generate the observed outcome, the true outcome is perturbed in
a way that is independent of the actual world. Formally,

Definition 4.24. A function ǫ : Ξ × Y → D(Y) is called noise. We write
ǫ(y′|ξ, y) for ǫ(ξ, y)(y′), that is, the probability that we observe y′ while y was
the true outcome of the experiment ξ.

From a collection of regression functions, grouped into models, and noise,
we construct an experimentation frame thus:

Definition 4.25. Let R ⊆ [Ξ → Y] be a collection of regression functions, M

a partition of R, and ǫ noise. The quintuple

FR,ǫ :=
〈
Y,R, M, Ξ,

〈
pr,ξ

〉
r∈R,ξ∈Ξ

〉
, (4.23)

where
pr,ξ(y) = ǫ

(
y
∣∣ξ, r(ξ)

)

is called the regression frame generated by R, ǫ.

4.7.2 Balance scale

In the balance scale problem, for symmetrical error matrices, the experiment
mechanics are entirely symmetrical. This suggests that the least favourable
distribution is the uniform distribution on worlds. The minimax strategy for
Experimenter is hard to compute. In this section, we take a Bayesian approach
by assuming the uniform distribution as a prior, and compute the optimal ex-
perimentation strategy with respect to it. As explained in §4.5.4, fixing the
strategy for Nature brings us within the framework of Bayesian Maximum En-
tropy Selection. Consequently, we can restrict attention to pure experimentation
strategies.

In order to reduce the size of the figures of strategies we restrict the problem
to 6 balls. Hence, a world is an element of [1 . . . 6]× {heavy, light}. We have
analysed the balance scale problem for three different sets of models. First, the
minimax strategy for learning the weight of the odd ball is shown in Figure 4.6.
Second, the minimax strategy for learning the index of the odd ball is shown in
Figure 4.7. Finally, the minimax strategy for learning both the weight and the
index of the odd ball is shown in Figure 4.8. These figures depict an annotated
subtree of the game tree, which should be read as follows:

• Ellipses represent positions where Experimenter is to move. A number
shown in an ellipse is the binary entropy of the distribution on models at
that position, before any further experiments are performed.

• Rectangles represent positions where Chance is to move. A number on the
bottom line of a rectangle is the expected binary entropy of the distribution
on models, after all future experiments will have been performed.

• Experimenter’s moves are labelled by experiments. For example {2, 4} −
{3, 5} indicates that balls 2 and 4 are placed in the left scale pan, whereas
balls 3 and 5 are placed in the right scale pan. We only show the optimal
move for Experimenter, to reduce the size of the figure.
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• Chance’s moves are labelled with an outcome and its conditional proba-
bility. We show all moves for Chance.

• At the top of rectangles, we show a partition of the balls. Balls within the
same equivalence class are indistinguishable to Experimenter, they have
always played the same role within each past experiment (i.e. left, right
or non-participating). This partition was used to prune the search tree
during the computation of the optimal strategy, but it is also interesting
by itself.

As an example, consider Figure 4.6. Learner is trying to learn the weight of the
odd ball. Before performing any experiments, Experimenter considers both the
model “heavy”and the model “light”equally likely, hence the entropy of the true
model is one. This is indicated within the topmost circle. The bold arrow going
downward indicates that Experimenter will perform, as his first experiment, the
weighing of balls 0 and 1 against balls 2 and 3. As indicated at the bottom of
the topmost rectangle, Experimenter now expects to have entropy 0.245 at the
end of the experimentation. The top line in the topmost rectangle indicates that
learner can now distinguish certain balls, as they have assumed different roles
in his first experiment. Below the topmost rectangle, there are three outgoing
arrows: one for each possible outcome. The labels on these arrows give the
conditional probability. In this case even is the most likely outcome, with
probability 0.367. The remaining subtree can be interpreted analogously.

4.8 Conclusion

We extended truth finding to experiment design by allowing the learner to choose
experiments. We introduced experimentation frames to formalise the arena
of experiment design. In experiment design, we face the experiment-design
problem: given an experimentation frame F, choose experiments intelligently,
to obtain as much information about the true model as possible. In order to
solve the experiment-design problem, we formulated it as the experimentation
game. A solution then takes the form of a minimax strategy for Experimenter

in this game.
We showed that strategies for Experimenter, both pure and mixed, can be

decomposed into two parts. The first part, called the experimentation strat-
egy, tells Experimenter which experiments to perform. We showed that each
experimentation strategy induces a truth-finding frame. For pure experimenta-
tion strategies, we call the induced truth-finding frame a subframe, because the
truth-finding mechanics are a slice through the experimental mechanics. Mixed
experimentation strategies, on the other hand, require inclusion of the randomly
generated experiments in the data. We call the truth-finding frame induced by a
mixed strategy a reduct. The second part of a strategy for Experimenter is called
the learning strategy. The learning strategy is a strategy for the truth-finding
game on the truth-finding frame induced by the experimentation strategy.

Using the Bribed Jury example, we show that, for Experimenter, mixed
strategies are more powerful than pure strategies. We concluded that this is
due to the entanglement of strategies that takes place within the risk function.

We introduced two approaches to solving the truth-finding game. Minimax
pure strategies can be found by solving the induced truth-finding game for each
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possible experimentation strategy. For a single experiment, this can be done in
practice. Unfortunately, the number of experimentation strategies grows doubly
exponential in the number of experiments. For sequential experimentation, this
approach is infeasible.

Minimax mixed strategies can be found, because the risk function is concave-
linear. General purpose convex optimisation methods, like the Newton method
and the Barrier method can be applied under certain conditions on the structure
models. This is a matter for future research.

4.8.1 Open questions

• We considered selecting experiments in worst-case-optimal fashion. One
could also consider generating a sequence of experiments according to some
product distribution, say uniformly at random. What is the relation be-
tween the minimax experiment-design risk, and the minimax truth-finding
risk on the reduct where experiments are chosen uniformly at random?

• We introduced the balance scale example in §4.1, and discussed it in §4.7.
Due to the symmetry of the possible world space and the experimental
mechanics, we suspect that the least favourable distribution for Nature is
the uniform distribution. Can we introduce a slight asymmetry (preferably
by introducing a different partition of the possible worlds into models),
such that the worst-case-optimal experiment and the optimal experiment
with respect to the uniform distribution are different.
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Figure 4.6 Balance scale: minimax strategy for learning weight
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Figure 4.7 Balance scale: minimax strategy for learning index
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Figure 4.8 Balance scale: minimax strategy for learning both
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Chapter 5

Conclusion

Research in the field of statistical machine learning is concerned with general
methods for learning from data. Likewise, research in the field of experiment
design is concerned with general methods for choosing experiments, with the
goal of learning from their outcomes. In this thesis we focus on the following
learning problem: how to obtain as much information as possible about the true
model in the worst case? Here, the worst case is taken over all possible states of
nature that the learner considers. We analysed this problem within the setting
of statistical machine learning, and within the setting of experiment design.

Setting

In practice, statistical learning problems are often specified using models, col-
lections of similar hypotheses. In this thesis we call hypotheses possible worlds,
and assume that one of the hypotheses is true. We call this hypothesis reality
and the model that contains it the true model. Models are cognitive devices,
introduced by the learner to structure the learning problem at hand. They typ-
ically arise by collecting all possible worlds in which the learner wants to take
the same action.

The amount of information that the learner lacks about the true model
is given by the log loss of the distribution on models that expresses his un-
certainty about the true model. We desire worst-case-optimal procedures, to
simultaneously obtain the best performance guarantees and circumvent the in-
herent circularity in the use of subjective priors for both decision-making and
performance assessment.

Truth finding

In Chapter 3 we developed, solved and discussed the machine learning version of
the above problem, which we coined the truth-finding problem. A natural way
to regard the truth-finding problem is as the truth-finding game: a two-player
strategic game with chance moves. We proved that the truth-finding game has
a value, and that a minimax mixed strategy for the learner always exists.

In the case that a maximin mixed strategy (a least favourable distribution)
for nature exists, we showed that the learner’s minimax strategy is the optimal
response to it. Hence this least favourable distribution may be thought of as
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a prior. This result is surprising; we performed a worst-case analysis to factor
out all prior knowledge, and yet we obtained a prior distribution on possible
worlds. We proved that a least favourable distribution exists when the convex
hull of the models is closed. We showed that the generalised entropy function is
concave, which implies that we can easily find its optimum, the least favourable
distribution, using convex optimisation methods. We showed that any mixed
strategy for nature can be decomposed into a prior distribution on models and,
for each model, a point from the convex hull of the distributions on outcomes
within that model. We conjectured that, by choosing the points from the closed
convex hull instead, a least favourable distribution for nature always exists. The
distribution on models that the learner obtains using truth finding can always be
interpreted as a code. When interpreted as a code, it is the code that minimises
the expected message length for encoding the true model. Moreover, if nature
plays worst-case-optimally then the learner’s distribution on models coincides
with the conditional probability distribution on models given the data. Only
in this special case does the learner’s distribution have a standard probabilistic
interpretation. We gave several examples that show that the least favourable
distribution is particularly non-uniform, and depends on the number of obser-
vations the learner will make. Hence, although the solution to the truth-finding
problem is Bayesian in form, we conclude that it is essentially non-Bayesian in
philosophy.

The truth-finding problem gives rise to a natural notion of similarity between
sequences of distributions. We provide a formal definition in general terms, and
hint at its relation to the information channel capacity. We define the Koolen
distance between two distributions as the opposite binary similarity, prove that
it satisfies minimality and symmetry but violates the triangle inequality, and
compare it graphically to the Kullback-Leibler divergence.

Experiment design

In Chapter 4 we turned to the experiment design version of the above problem.
We extended truth-finding with experiments, obtaining the experiment-design
problem. Again, this problem is naturally viewed as a game. We showed that
strategies for the experimenter consist of two parts: an experimentation strat-
egy and a learning strategy. The experimentation strategy is used for exper-
iment selection. We showed that after fixing the experimentation strategy, a
truth-finding subgame remains. The learning strategy is then a strategy for
this subgame. We showed in Chapter 3 that the optimal learning strategy can
easily be found. Hence only a simpler game remains, where the experimenter
chooses an experimentation strategy, and nature chooses the actual world. We
gave a simple example that showed that the experimenter must consider mixed
strategies. The minimax mixed experimentation strategy can be obtained by
finding the saddle point of the doubly generalised entropy function. We proved
that this function is concave-linear. Concave-linear functions are of relatively
low complexity. The saddle point can be found numerically using methods from
the convex optimisation literature. There is still much interesting work to be
done in this area.
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Future work

We return to the problem of learning polynomials. In this problem, the degree
of an unknown polynomial has to be learned by sequential probing, where each
probe returns the function value, perturbed by Gaussian noise. We feel that we
have made an important first step towards a general solution. The following
points must still be addressed:

• The truth-finding and experiment-design problem are defined for finite
outcome, model and experiment sets. Can these be generalised to un-
countable sample spaces?

• The truth-finding problem is defined for finite sets of models. Can these
be generalised to countable sets?

• The minimax optimal pure strategy for experimenter in the sequential
experiment-design problem can theoretically be obtained by solving a
number of truth-finding instances that grows doubly exponential in n.
Can we design smarter algorithms for this particular problem?

• In our analysis of the experiment-design problem, we have assumed that
the number of experiments n is fixed and known to the experimenter.
What can be said in cases where n is not fixed? Can we, for example,
fix the amount of information that must be obtained, and then try to
minimise the number of experiments that need to be performed?

Ultimately, solutions to these questions will allow us to solve sequential experiment-
design problems of the level of complexity of the polynomial degree selection
problem.
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Appendix A

Measure theory

A.1 Preliminaries

Probability theory deals with probabilities of events, sets of outcomes. Prob-
ability is inextricably intertwined with countability. To preclude paradox we
use measure theory, which has the following formalisation of events and their
probability.

Definition A.1. Let S be a set. A set Σ ⊆ ℘(S) is called a σ-algebra over S
if the following conditions hold:

1. S ∈ Σ.

2. If A ∈ Σ then S \ A ∈ Σ.

3. If 〈An〉n∈N is a sequence of elements of Σ then
⋃

n∈N An ∈ Σ.

A structure M = 〈S, Σ〉 is called a measurable space if Σ is a σ-algebra over
S. We call the elements of Σ events. An important measurable space is 〈R,B〉,
where B is the Borel σ-algebra on R, i.e. the smallest σ-algebra on R containing
all open sets.

Definition A.2. Let M = 〈S, Σ〉 be a measurable space. A function µ : Σ →
[0,∞] is called a measure on M if it satisfies the properties

1. µ(∅) = 0.

2. If 〈An〉n∈N is a sequence of pairwise disjoint elements of Σ, then

µ
(⋃

n∈N An

)
=

∑
n∈N µ(An). (σ-additivity)

Additionally, µ is called a probability measure if µ(S) = 1.

Definition A.3. A triple 〈S, Σ, µ〉 is called a measure space (probability space)
if µ is a measure (probability measure) on 〈S, Σ〉.

An important measurable space is 〈R,B, Leb〉 where the measure Leb (Lebesgue
measure) is generated by closing the following function under countable addi-
tivity

Leb([a, b]) := b − a.

Lebesgue measure is the uniform measure on R; the measure of an event is given
by its length.
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Definition A.4. Let 〈S, Σ〉 and
〈
S′, Σ′

〉
be measurable spaces. A function

f : S → S′ is called Σ, Σ′-measurable if

∀Φ ∈ Σ′ : f−1[Φ] ∈ Σ.

If the second measurable space is 〈R,B, Leb〉, we say that f is Σ-measurable.

Definition A.5. Let M = 〈S, Σ, µ〉 be a measure space. A function f : S → R

is called a probability density function on M if

• f is Σ-measurable,

• f is non-negative µ-almost everywhere, and

•
∫

S f(x) dµ = 1.

A probability density function f on M generates a probability measure P on
〈S, Σ〉 defined by

P (Ω) :=

∫

Ω

f(x) dµ.

Definition A.6. For any measurable space M = 〈S, Σ〉, we denote by D(M)
the set of all probability measures on M. If M is clear from the context, we
write D(S) for D(M).

Definition A.7. We denote by Nn(µ, Σ) the normal distribution on Rn with
mean µ and n×n covariance matrix Σ. When n = 1, we write N(µ, σ2) instead.

Definition A.8. Fix a probability space P = 〈S, Σ, P 〉. A measurable function
X : S → R is called a random variable.

As stated before, a random variable transforms outcomes into real numbers.
Via this transformation, we can forget about the original measure, and consider
the induced measure on R. We reserve the term probability distribution for a
probability measure that specifies the measure of a random variable on R.

Sometimes, it is useful to translate the set of outcomes into some set different
from R. We call such transformations pseudo random variables if the obvious
measurability condition obtains.

Definition A.9. Let X be a random variable defined on a probability space
P = 〈S, Σ, P 〉. We define the expected value or expectation of X by

E [X ] :=

∫

S

X dP

Definition A.10. Let X be a random variable on a probability space P. We
say that X is constant if ∃c∀x ∈ S : X(x) = c. We call X almost surely constant
if ∃c : P (X = c) = 1. This implies P (X = E [X ]) = 1.

Remark A.11. A random variable X on P is almost surely constant if all measure
of P is assigned to a region where X is constant. This can be solely due to X ,
namely when X is constant, or solely due to P , namely when P puts all measure
on a single point, or due to both.
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Theorem A.12 (Jensen’s Inequality). [Wil91, Theorem, p. 61] Let X be a
convex set, P a probability distribution on X . Then for any convex function
f : X → R,

EP

[
f(X)

]
≥ f

(
EP [X ]

)
(A.1)

Moreover, if f is strictly convex, then equality in (A.1) implies that X is an
almost surely constant random variable.

One level of abstraction higher, we work with a meta-distribution on sets of
probability distributions. We can interpret such a meta-distribution as a prior
probability; one first samples a distribution according to this meta-distribution,
and then generates an outcome according to the sampled distribution. For more
detail, see [GD04, Section 9.2]. Such a meta-distribution can be collapsed into
a single distribution on outcomes as follows.

Definition A.13. Let X be a set, Q a convex set of distributions on X with
σ-algebra ΣX , and Q a distribution on Q. We define EQ [Q] : ΣX → R, the
expected distribution of Q, by

EQ [Q] (X) := EQ

[
Q(X)

]
=

∫

Q

Q(X) dQ

where Q = 1Q is a pseudo random variable.

Definition A.14. Let X, Y be pseudo random variables with range X and Y.
The distribution P that gives the distribution of the pair 〈X, Y 〉 is called the
joint distribution of X and Y . The marginal distributions of X , Y are given by

PX(X = x) :=

∫

Y

P (X = x, Y = y) dy (A.2)

PY (Y = y) :=

∫

X

P (X = x, Y = y) dx (A.3)

A.2 Truth-finding frame

Definition A.15. A quadruple

F =
〈
Y, T, M, 〈pθ〉θ∈T

〉

is called a truth-finding frame, or frame for short, if the following conditions
hold:

• Y = 〈Y, ΣY〉 is a measurable space. We refer to Y as the outcome space,
and call the elements of Y outcomes.

• T = 〈T , ΣT 〉 is a measurable space. We refer to T as the possible-world
space, and call the elements of T possible worlds.

• M is a finite partition of T , with the additional demand that M is a sub
σ-algebra of ΣT .

• 〈pθ〉θ∈T : Y × T → R+ is ΣY × ΣT -measurable, and pT is a probability
density function on Y for each θ ∈ T .

When Y and T are clear from the context, we write F =
〈
Y, T , M, 〈pθ〉θ∈T

〉

instead.
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Appendix B

Concavity of generalised

entropy

The generalised entropy function H is concave. This important result will be
shown after the following theorem, which is rather useful in proving convexity
results in information theory.

Theorem B.1 (Log sum inequality, [CT90, Theorem 2.7.1]). For non-negative
a1, . . . an and b1, . . . bn

∑

i=1

ai log
ai

bi
≥

(∑

i=1

ai

)
log

∑
i=1 ai∑
i=1 bi

Theorem B.2. H(PΘ) is concave.

Proof. Recall from Remark 3.2.6 that a measure PΘ induces a measure on T ×Y.
This measure can be transformed using M into a measure on M×Y. We rewrite
(3.19) to

H(PΘ) = EM,Y

[
− log

P (M, Y )

P (Y )

]
.

For arbitrary distributions P and Q on T , and a real number 0 ≤ λ ≤ 1, define
Pλ := λP + (1 − λ)Q. We need to show

H(Pλ) ≥ λH(P ) + (1 − λ)H(Q). (B.1)

For each y ∈ Y and M ∈ M, we apply Theorem B.1 with substitutions

n = 2 a1 = λP (y,M) b1 = λP (y)

a2 = (1 − λ)Q(y,M) b2 = (1 − λ)Q(y),

obtaining

λP (M, y) log
λP (M, y)

λP (y)
+ (1 − λ)Q(M, y) log

(1 − λ)Q(M, y)

(1 − λ)Q(y)

≥
(
λP (M, y) + (1 − λ)Q(M, y)

)
log

λP (M, y) + (1 − λ)Q(M, y)

λP (y) + (1 − λ)Q(y)
(B.2)
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which by observing

λP (y) + (1 − λ)Q(y) = λ
∑

M

P (M, y) + (1 − λ)
∑

M

Q(M, y)

=
∑

M

(
λP (M, y) + (1 − λ)Q(M, y)

)

=
∑

M

Pλ(M, y)

= Pλ(y)

(B.3)

reduces to

λP (M, y) log P (M|y) + (1 − λ)Q(M, y) log Q(M|y)

≥ Pλ(M, y) log Pλ(M|y). (B.4)

Summation of the opposite of both sides over M and Y yields

H(Pλ) = −
∑

M,y

Pλ(M, y) log Pλ(M|y) (B.5)

≥ −λ
∑

M,y

P (M, y) logP (M|y) − (1 − λ)
∑

M,y

Q(M, y) logQ(M|y)

(B.6)

= λH(P ) + (1 − λ)H(Q) (B.7)

This proves (B.1), completing the proof.

We can decompose a joint distribution P on M × Y into PM and PY |M for
each M ∈ M, the latter jointly denoted by PY |M .

Corollary B.3. H(PM , PY |M ) := H(P ) is concave in all its arguments.

Proof. H
(
λPM + (1 − λ)QM , λPY |M + (1 − λ)QY |M

)
= H(λP +(1−λ)Q).

Corollary B.4. By Theorem 2.9, noting that D(M) is convex, the function

G(PY |M ) := sup
PM

H(PM , PY |M )

is concave.
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Appendix C

Notation table

Table C.1 Notation for sets, pseudo-random variables and elements

Sort Set P.R.V. Element Distribution

Possible world T Θ θ PΘ

Experiment Ξ X ξ ξ

Outcome Y Y y p

Model M M M m

Learning strategy F F f PF

History H H h −
Ball weight W W w −
Ball index I I i −
Code index J J j Q

Table C.2 Notation and type of important functions

Function Sym Domain Range

Learning strategy f Yn → D(M)
Classification M T ։ M

Mechanics p T → D(Y)
Experimental mechanics p T × Ξ → D(Y)

Table C.3 Players

Name Role

Nature Chooses the actual world
Chance Impartial player, used to sample outcomes
Learner Chooses a distribution on models (given outcomes)
Experimenter Sequentially chooses experiments, then chooses a distri-

bution on models
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expected conditional entropy, 17
expected distribution, 15, 77
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experiment
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experiment design, 50
experiment-design

problem, 53
experimental mechanics, 53
experimentation
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game, 54

experimentation strategy, 55, 56, 63,
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Experimenter, 54
experiments, 53
extended Bayes, 37

family, 12
frame

experimentation, 52
product, 27, 63
regression, 66
truth-finding, 24

game
experimentation, 54
matrix, 20
truth-finding, 27

game tree, 21
generalised entropy, 38

hypothesis testing, 5

idealised
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Information Inequality, 18
information set, 21, 27
irredundant code, 16
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joint distribution, 15, 77
just guessing, 31

K-distance, 42
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KL-divergence, 18
Kolmogorov complexity, 4
Koolen distance, 42
Kullback-Leibler divergence, 18

Learner, 27
learning strategy, 56, 63, 65
least favourable, 33
leaves, 21
log loss, 6

marginal distributions, 15, 77
matrix game, 20
maximin, 20
measurable

function, 76
space, 75

measure, 75
probability, 75
space, 75

mechanics, 24
metric, 42
minimax, 20, 33
Minimax Theorem, 21
mixed matrix game, 21
mixed strategy, 20
mixed strategy for Experimenter in sim-

ple form, 60
models, 24, 53
mutual information, 18

Nature, 27, 54
noise, 66
non-terminals, 21
normal distribution, 76
normal form, 28

outcomes, 24, 53

partition, 13
PIPO principle, 5
possible world, 4, 24, 53
prefix-free code, 16
prior on models, 32
probabilistic strategy, 65
probability

density function, 76
distribution, 14, 76
measure, 75
space, 75

product distribution, 16

product frame, 27, 63
pseudo random variable, 15, 76
pure strategy, 20

for Learner, 28
for Nature, 28
for Experimenter, 56

random variable, 14, 76
almost surely constant, 15, 76
constant, 15, 76

reduct, 61, 65
redundant code, 16
regression

frame, 66
function, 66
relation, 51

risk
of the play θ, f , 28
of the play θ, 〈s, f〉, 64
of the play θ, 〈ξ, f〉, 56
of the play PΘ, PF , 60
of the play PΘ, 〈ξ, f〉, 60
of the play PΘ, 〈s, f〉, 65

root, 21

saddle-point, 20
sample space, 14
Schönfinkelisation, 12
sequence, 12
Shannon-Fano code, 17
similarity, 41
simplex, 13
space

measurable, 75
sample, 14

state of nature, 4
stochastic matrix, 31
strategy, 7

mixed, 20
pure, 20

subframe, 57

terminals, 21
the history, 63
tree, 21
truth-finding, 23

frame, 24, 77
game, 27
problem, 25

unit n-simplex, 13
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within-model
marginal, 32
prior, 32

world
actual, 4
possible, 4, 24, 53
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