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Abstract. We present a simple online two-way trading algorithm that
exploits fluctuations in the unit price of an asset. Rather than analysing
worst-case performance under some assumptions, we prove a novel, un-
conditional performance bound that is parameterised either by the actual
dynamics of the price of the asset, or by a simplifying model thereof. The
algorithm processes T prices in O(T 2) time and O(T ) space, but if the
employed prior density is exponential, the time requirement reduces to
O(T ). The result translates to the prediction with expert advice frame-
work, and has applications in data compression and hypothesis testing.

1 Introduction

We consider a two-player game played between Investor and Nature. Investor
starts out with one unit of cash. At each time, Investor decides which fraction of
his current capital to invest in an asset (denoted A), and how much to keep in
his boot (denoted B). Nature, on the other hand, chooses the price of the asset.

A play for Nature is a function Λ : [0, T ] → R that specifies the natural
logarithm of the unit price of A as a function of time. The end-time T is part of
Nature’s move and unknown to Investor. An example play is shown in Figure 1.

Investor’s payoff is defined as the natural logarithm of his capital at the end-
time T , where shares owned are valued at the final logprice Λ(T ). In hindsight,
it would have been optimal for Investor to follow the strategy SΛ that invests
all capital in A at local minima of Λ, and liquidates all shares into B at local
maxima. Let z = z0, . . . , zm denote the sequence of logprices at local extrema of
Λ, with z0 = Λ(0) and zm = Λ(T ). The payoff of the strategy SΛ thus equals

SΛ∗Λ :=
∑

1≤i≤m

max{0, zi − zi−1}.

We construct a foresight-free, computationally efficient strategy π that guaran-
tees payoff π∗Λ close to SΛ∗Λ. The definition of π relies on the selection of a
probability density function on [0,∞) that for convenience we identify with π
itself (see Section 2), and we abbreviate − lnπ(h) to `(h). We then prove

π∗Λ ≥ SΛ∗Λ−
∑

1≤i≤m

`
(
|zi − zi−1|

)
− (m− 1)cπ − ln 2− 2επ, (1)
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Fig. 1: An example play Λ for Nature, with a regularised trend line Λ′.

where cπ and επ are two constants that depend on π. Thus the payoff of π on Λ
falls short of the optimum by an overhead that depends on the complexity of Λ,
measured in terms of both the length of the vector z, and the sizes of its entries.
The bound is entirely independent of the time scale T .

When Λ is simple, i.e. has few large fluctuations, (1) shows that π exploits
almost all achievable payoff. The bound degenerates when Λ sports many small
fluctuations, for which the overhead `(x) exceeds the benefit x of trading. How-
ever, we prove that for any regularisation Λ′ of Λ, as illustrated by the dashed
line in Figure 1 and defined precisely in Section 3.2, π’s payoff satisfies

π∗Λ′ ≤ π∗Λ. (2)

Thus, we may pretend that Nature actually played Λ′, and apply the bound (1)
with Λ′ in place of Λ. In fact the regulariser Λ′ may be interpreted as a model for
Nature’s play Λ. The most complex model then yields the bound as presented in
(1), but we may now concern other models, that strike a better balance between
model complexity and goodness of fit. Such tradeoff models will usually yield
better bounds. In conclusion, if in hindsight a simple regulariser can be found
with large payoff, then π will collect most of that payoff as well.

Example 1. Let Λ and Λ′ be, respectively, the play for Nature and the regu-
lariser shown in Figure 1. The extrema of the regulariser are given by z′ =
(0, 42, 36, 82, 68, 112, 57, 90, 77, 90). Then SΛ′∗Λ′ = (42 − 0) + (82 − 36) + . . . +
(90− 77) = 178. Now we select the exponential density listed in Table 1 for the
definition of π; the values for cπ and επ are also listed there. We can now apply
bounds (2) and (1) to find

π∗Λ ≥ π∗Λ′ ≥ 178− 64.8− 8 · 0.034− ln 2− 2 · 3.40 ≈ 105.4.



Note that there may be choices of Λ′ for which the bound is better, and even for
the optimal choice of Λ′ the strategy π may perform substantially better than
our bound indicates. The actual payoff of π on these data is π∗Λ = 175.4. ♦

Applications and Related Work. Our model and its analysis are phrased in
financial terms. However, it applies much more widely. We list four examples.

One-Way Trading and Two-Way Trading. This is the most direct example. We
let Λ be the logarithm of the exchange rate between any two assets, say dollar and
yen. If we forbid selling A, we obtain the setting called One-way Trading. Efficient
algorithms with minimax payoff for one-way trading under various restrictions
on Nature’s play Λ are known. E.g. fixed daily price growth range [2], fixed price
range [7] and bounded quadratic variation [6]. Two-way trading guarantees are
derived in [4] by iterating a unidirectional trading algorithm back and forth.
Both the algorithms and the bounds are parametrised by the restrictions placed
on Nature’s play.

Our results are of a different kind. First, no restrictions are placed on Nature’s
play. Second, our guarantees are expressed in terms of Nature’s actual play (or
a regularisation thereof), and hence remain informative when Nature does not
play to ruin Investor.

Prediction with Expert Advice. Two experts, say A and B sequentially issue
predictions. We denote their cumulative loss at time t by LA(t) and LB(t).
We let Λ(t) = LB(t) − LA(t). In prediction tasks with so-called mixable loss
[13], guarantees for our financial game directly translate to expert performance
bounds and vice versa. Efficient strategies include the seminal Fixed Share [9],
the Switching Method [12], and the Switch Distribution and its derivatives [8,
10]. These algorithms guarantee payoff ρ∗Λ ≥ SΛ′∗Λ′ − O(m′ lnT ) for each Λ′

with m′ blocks. The logarithmic dependence of the bound on the time T of these
algorithms means that for any arbitrary number h, if by switching just a single
time the payoff could be improved by h, there is a sample size T such that these
algorithms are not able to exploit this.

Variable Share [9] switches based on the losses LA and LB. Its payoff guar-
antee depends logarithmically on the loss of the best reference strategy with m′

blocks. However, its analysis assumes so-called bounded loss, and does not apply
to financial games (which involve logarithmic loss, which is unbounded).

Prefix Coding/Compression. Fix two prefix codes A and B for a sequence of
outcomes x1, . . . , xT . Let LA(t) and LB(t) denote the code-length of A and B
on the outcomes x1, . . . , xt measured in nats. Now let Λ(t) = LB(t) − LA(t). It
is well-known that we can build a prefix code that attains code length ln(2) +
min

{
LA(T ), LB(T )

}
on the data. When different codes are good for different

segments of the data, we observe fluctuation in Λ. Using standard information-
theoretic methods, e.g. [3], our financial prediction scheme can be transformed
into a prefix code that exploits these fluctuations.



Hypothesis Testing. We are given a null hypothesis P0 and an alternative hypoth-
esis P1. Both candidate hypotheses are probabilistic models for some sequence of
observations x1, x2, . . . , xT . Let Λ(t) = ln

(
P1(x1, . . . , xt)/P0(x1, . . . , xt)

)
be the

loglikelihood ratio between P1 and P0. Thus Λ measures the amount of evidence
against the null hypothesis and can be used as a test statistic. Traditionally [1],
we choose a threshold τ > 0 and reject the null hypothesis when Λ(T ) ≥ τ , an
event that is extremely unlikely under P0. The case where Λ(T ) is below the
threshold τ , while Λ(t) ≥ τ at some earlier time t is considered in [11, 5], and
tests are presented that lose as little evidence as possible while remaining un-
biased. These tests are based on strategies that switch only once, and resemble
strategies for one-way trading. By the same method, our strategy induces a fair
test statistic that can be used to reject P0 whenever Λ fluctuates heavily; an
event that is also unlikely under P0.

Outline. We explicate the setting and describe the strategy π for Investor in
Section 2. We analyse the payoff of π and prove our payoff guarantee in Section 3.
We then show how to implement the strategy π efficiently in Section 4.

2 Setting

We introduce the details of our financial game. We first review Nature’s play Λ.
We then construct strategies for Investor, culminating in the definition of the
strategy π. We conclude this section with a lemma that simplifies all later proofs
by exploiting the symmetry between A and B.

2.1 Nature’s Play Λ

A play for Nature is a logprice function Λ : [0, T ] → R. The end-time T is part
of Nature’s move, and unknown to Investor.

For simplicity, we restrict attention to the setting where Λ is discrete, i.e.
piecewise constant with jumps at integer times. This is sufficient for the practical
scenario where Λ is monitored intermittently (albeit possibly very often). Later
in the analysis it will be convenient for technical reasons to generalise to piecewise
continous plays for Nature with finitely many local extrema and finitely many
discontinuities; nevertheless ultimately we remain concerned with the discrete
setting only.

Our results do extend quite readily to the wide class of càdlàg logprice func-
tions (right-continuous with left limits). These encompass continuous time mod-
els that are often considered in the financial literature, such as Brownian motion
with drift, etc. Such theoretically interesting generalisations are deferred to fu-
ture publications.

2.2 Investor’s Strategy π

We now construct the strategy π for Investor in three stages. Two basic strategies
exist. Strategy A invests the initial unit capital in the asset, whereas strategy



B keeps all capital in the boot. At the end of the game, all shares are valued at
the final logprice Λ(T ). The payoffs, defined as Investor’s final logcapital, of the
basic strategies equal

A∗Λ := Λ(T )− Λ(0) and B∗Λ := 0.

Since we use logprice differences extensively, we abbreviate Λ(t)− Λ(s) to Λ|ts.

Time-switched Strategies. From these basic strategies A and B we construct
more interesting strategies. Let t = t0, t1, t2, t3, . . . be a sequence of times such
that 0 = t0 ≤ t1 ≤ t2 ≤ . . . The strategy tA switches at times t starting with A.
That is, tA invests all capital in A until time t1. At that time it sells all shares,
and keeps all money in B until time t2. Then it again invests all capital in A until
time t3 etc. Symmetrically, tB is the strategy that switches at times t starting
with B. Thus the payoffs of tA and tB when Nature plays Λ are

tA∗Λ :=

∞∑
i=0

Λ|T∧t2i+1

T∧t2i and tB∗Λ :=

∞∑
i=0

Λ|T∧t2i+2

T∧t2i+1
.

Of course, a good time switch sequence t for Investor depends on Nature’s un-
known move Λ. However, Investor may hedge by dividing his initial capital ac-
cording to some prior distribution ρ on the switch time sequence t, and construct
time-switched strategies ρA and ρB with payoffs

ρA∗Λ := ln

∫
exp
(
tA∗Λ

)
dρ(t) and ρB∗Λ := ln

∫
exp
(
tB∗Λ

)
dρ(t),

and the meta strategy ρ with payoff ρ∗Λ := ln
(
1
2 exp

(
ρA∗Λ

)
+ 1

2 exp
(
ρB∗Λ

))
.

Price-switched Strategies. Price-switched strategies decide when to trade
based on the logprice Λ(t) instead of the time t itself. This renders their payoff
independent of the time-scale. Fix a sequence of nonnegative reals δ = δ1, δ2, . . .
We denote by δA the strategy that initially invests all capital in A, and waits
until the first time s1 where the logprice difference Λ|s10 is at least δ1. It then sells
all shares and puts the money into B, until the first subsequent time s2 that the
logprice difference Λ|s2s1 is at most −δ2. Then it invests all capital into A again,

until the logprice difference Λ|s3s2 is at least δ3, etc. The strategy δB is defined
symmetrically, with switching times r0, r1, . . . The switching time sequences s
and r are obtained as follows. First s0 = r0 = 0. Then recursively

si := min
{
t ≥ si−1

∣∣ Λ|tsi−1
≥ +δi

}
ri := min

{
t ≥ ri−1

∣∣ Λ|tri−1
≤ −δi

}
i even,

si := min
{
t ≥ si−1

∣∣ Λ|tsi−1
≤ −δi

}
ri := min

{
t ≥ ri−1

∣∣ Λ|tri−1
≥ +δi

}
i odd.

Both s and r are a function of δ and Λ and satisfy s(δ, Λ) = r(δ,−Λ). By
convention, the minimum is infinite if no suitable successor time exists in the
domain of Λ, i.e before time T . The payoffs of δA and δB are given by

δA∗Λ := sA∗Λ and δB∗Λ := rB∗Λ.



The strategy δA has the following property. Whenever it sells its shares, say at
time si for some odd i, the asset price, and hence its capital, has multiplied by
at least exp(δi) ≥ 1 since the acquisition at time si−1. This holds irrespective of
Nature’s play. In particular, between time si and si+1 for odd i, the logarithm
of its capital equals

Λ|s1s0 + Λ|s3s2 + Λ|s5s4 + . . .+ Λ|sisi−1
≥ δ1 + δ3 + δ5 + . . .+ δi.

Of course, for each logprice difference sequence δ, the number of switches that
is executed, and hence the quality of δA depends on Nature’s move Λ. Let
D =

{
δA, δB

∣∣ δ ∈ [0,∞)
∞}

be the set of price-switched strategies for Investor.

The Strategy π. Again, we may hedge by dividing our initial capital according
to some prior π on δ, and obtain strategies πA and πB with payoffs

πA∗Λ := ln

∫
exp
(
δA∗Λ

)
dπ(δ) and πB∗Λ := ln

∫
exp
(
δB∗Λ

)
dπ(δ),

and the meta strategy π with payoff π∗Λ := ln
(
1
2 exp

(
πA∗Λ

)
+ 1

2 exp
(
πB∗Λ

))
.

Note that the price-switched strategies in D are independent of the time scale,
and so are these strategies based on them.

Requirements on π. The above construction works for any prior π. In this paper
we analyse the behaviour of strategies π that satisfy these requirements:

1. π is the independent infinite product distribution of some probability density
function on [0,∞). Since the distinction is always clear, we also denote the
univariate density by π.

2. the function x 7→ exπ(x) is increasing.
3. the density π is log-convex.

The first requirement ensures that we can hedge capital according to π. The
second requirement ensures that paying − lnπ(x) to gain x is a better deal when
x is larger. The third requirement ensures that we rather pay − lnπ(x+ y) than
− lnπ(x)−lnπ(y) to gain x+y. We use the following consequences in our bounds.

Lemma 1. Let π satisfy the requirements 1–3 above. Then

1. π is strictly positive.
2. π is strictly decreasing.
3.
∫∞
h
π(x) dx ≥ π(h) for each h ≥ 0.

Proof. Since π is a convex probability density, it is decreasing and thus 0 <
π(0) = e0π(0). Since exπ(x) increases, we have π(x) > 0 for all x. Then,
since π is a non-zero convex probability density, it must be strictly decreas-
ing. Finally, for 0 ≤ h ≤ x we have π(x) = π(x)exe−x ≥ π(h)ehe−x. Therefore∫∞
h
π(x) dx ≥ π(h)

∫∞
h

eh−x dx = π(h) . ut
The last fact implies that the density π(x) ≤ 1 for all x. Throughout this paper,
we abbreviate − lnπ(x) to `(x). Thus ` is nonnegative, concave and increasing.

Example 2. The densities shown in Table 1, ordered from heavy to light tails,
satisfy all the requirements. ♦



Table 1: Example priors.

Fat tail Pareto Exponential

π(x)
log(o)

(x+ o)(log(x+ o))2 (c− 1)oc−1(x+ o)−c αe−αx

Condition 2 ≤ (o− 1) log o
(Sufficient: o ≥ 2.89)

1 < c ≤ o 0 < α ≤ 1

Parameters o = 3 c = 2, o = 3 α = 1/3

επ 4.10396 3.55884 3.39788

cπ 0.016645 0.0288849 0.034016

2.3 Exploiting Symmetry

Payoff is measured as (the natural logarithm of) Investor’s final amount of cash.
Of course, cash and asset are intrinsically symmetric. We make this precise as
follows. We say that the following pairs of strategies are dual

A,B tA, tB ρA, ρB ρ, ρ δA, δB πA, πB π, π

and vice versa in each case. The meta strategies ρ and π are self-dual.

Lemma 2 (Duality). Let S and S′ be dual strategies. Then for each Λ

S∗Λ = S′∗(−Λ) + Λ|T0 .

Proof. The lemma is trivial for the dual pair A and B. We proceed to prove
the lemma for the dual strategies tA and tB, the other cases follow simply by
definition. Recall that exp(Λ) is the asset price in cash per share, so that exp(−Λ)
is the price in shares per cash. Thus tB∗(−Λ) is the log-number of shares resulting
from investing one share according to the strategy tA. Finally, Λ|T0 = Λ(T )−Λ(0)
is the result of exchanging cash to asset initially, and asset to cash at the end. ut

3 Payoff Bound

In this section we prove the payoff guarantees for the strategy π that were given
in the introduction. We build towards the statement and proof of a more precise
version of the bounds in the following subsections. First, in Section 3.1 we show
that Nature’s worst-case logprice functions are continuous. Then, in Section 3.2
we show that Investor’s payoff decreases when Nature plays more regular. In
Section 3.3 we analyse Investor’s payoff under a regularity assumption on Λ
called γ-separation. Finally, in Section 3.4 we show how to establish γ-separation
if it does not obtain and establish the bound in the form of Theorem 5.



3.1 Nature Plays a Continuous Logprice Function Λ

We now prove that it is sub-optimal for Nature to play a discontinuous Λ. To
do so, we show that Investor’s payoff is reduced when Nature eliminates a jump
by inserting a linear interpolation. Let Λ have a discontinuity at t. We define Λ′,
the t-ironing of Λ, by Λ′(s) := Λ(s) for s < t, Λ′(s + 1) := Λ(s) for s > t, and
Λ′(s) := (1+t−s)Λ(t−)+(s−t)Λ(t) for t ≤ s ≤ t+1, where Λ(t−) := lims↑t Λ(s).
This definition is illustrated by Figure 2.

Theorem 1 (Continuous Free Lunch). Fix any play for Nature Λ with a
discontinuity at time t, and let Λ′ be the t-ironing of Λ. Then

π∗Λ′ ≤ π∗Λ.

Proof. See Figure 2. By duality (Lemma 2), we may assume that the jump is
upward. Obviously, any strategy δ′ that does not switch at time t on Λ has
identical payoff on Λ and Λ′. Now consider any strategy δ′ = (. . . , h, h− l, . . .),
where h prompts a switch at time t on Λ. We now modify the strategy to
δ = (. . . , h, u − l, . . .) and we compare the term corresponding to δ′ in the
integral for π∗Λ′ to the term corresponding to δ in the integral for π∗Λ:

exp(δ′∗Λ′)π(δ′)

exp(δ∗Λ)π(δ)
=

exp(h− l)π(h− l)
exp(u− l)π(u− l)

≤ 1,

where the inequality uses that ehπ(h) is increasing (see Section 2.2). The proof
follows by observing that the mapping that takes δ′ to δ is a translation. ut

When Investor follows the strategy π, there is no benefit for Nature to playing a
logprice function Λ with jumps. Without loss of generality we henceforth restrict
Nature to continuous plays. This simplifies analysis considerably, as it allows us
to assume that switches specified by any δ occur at exactly the specified logprices.

u
h
l

t

(a) Nature’s move Λ with jump at time t,
and strategy δ = (. . . , h, u− l, . . .).

u
h
l

t t+1

(b) The t-ironing Λ′ of Λ, and strategy
δ′ = (. . . , h, h− l, . . .)

Fig. 2: Worst-Case Plays for Nature are Continuous.



3.2 Ordering by Regularity

Given a move for Nature Λ : [0, T ]→ R, we say that another move Λ′ : [0, T ′]→
R is more regular than Λ, denoted Λ′ 4 Λ, if there is a monotonic function f :
[0, T ′]→ [0, T ] such that f(0) = 0, f(T ′) = T and Λ′ = Λ ◦ f . That is, the price
levels of the regularisation Λ′ are a subsequence of the price levels of Nature’s
move Λ, with the same initial and final price, but potentially less fluctuation. We
now show that by following a fixed price-switched strategy, Investor gets richer
whenever Nature’s move is less regular.

Theorem 2 (Monotonicity). For each price-switched strategy S ∈ D and con-
tinuous logprice functions Λ and Λ′

Λ′ 4 Λ implies S∗Λ′ ≤ S∗Λ.

Proof. First note that Λ′ 4 Λ iff −Λ′ 4 −Λ. So by symmetry (Lemma 2) it
suffices to prove the theorem for the strategies in D that start with A. We
proceed by induction on the number of switches executed by the strategy δA on
the regulariser Λ′. For the base case, suppose this number is zero, i.e Λ′|t0 < δ1
for each 0 ≤ t ≤ T ′. Let m ≥ 1 denote the number of blocks of δA on Λ. There
are two cases. If m is even then δA follows B on the last block. Since δ1 > Λ′|T ′0

δA∗Λ =
∑

1≤i<m odd

δi ≥ δ1 > Λ′|T
′

0 = δA∗Λ′.

If m is odd, then δA follows A on the last block. Again using Lemma 2, we get

δA∗Λ =
∑

1≤i<m even

δi + Λ|T0 ≥ Λ|T0 = Λ′|T
′

0 = δA∗Λ′.

To prove the induction step, suppose a switch is executed, i.e. the first difference
δ1 is present in the regulariser Λ′, and hence also in Nature’s play Λ, then the
strategy δA switches at price level Λ(0)+δ1 on either play, resulting in the same
capital. The switches may occur at different times on Λ and Λ′. Nevertheless,
the induction hypothesis applies to the tails of the plays since the remainder of
the regulariser Λ′ is more regular than the remainder of Nature’s move Λ. ut

Since the theorem holds pointwise in D, it also holds for the mixture strategy π.

3.3 With γ-Separation

Fix a logprice function Λ. Throughout this section, we use the following notation:

Definition 1. We denote by z = z0, z1, . . . , zm the sequence of logprices at the
local extrema of Λ (attained or not), with z0 = Λ(0) and zm = Λ(T ), and we
say that Λ has m blocks. Let ∆ = ∆1, . . . ,∆m denote the sequence of absolute
logprice differences, i.e. ∆i := |zi − zi−1|.



Definition 2. We say that Λ has γ-separation if ∆1, ∆m ≥ γ and ∆i ≥ 2γ for
each 1 < i < m. That is, the border optima have logprice difference at least γ
with the border and each subsequent pair of local extrema has at least logprice
difference 2γ.

We now analyse the payoff of the strategy π, assuming that Λ has γ-separation.

0 T
z0

z1

z2

z3

z4

Fig. 3: Domain of Integration Example.
Some Λ, with m = 4, is shown in black.
The height of the dark gray triangles equals
γ. This Λ has γ-separation. In particular
∆2 = z1 − z2 = 2γ. Theorem 3 integrates
over the strategies that are optimal for log-
price functions in the light gray region.

Theorem 3 (γ-Separation Payoff). For each Λ with γ-separation

π∗Λ ≥
∑

1≤i≤m

(zi − zi−1)+︸ ︷︷ ︸
gain

−
∑

1≤i≤m

`(∆i)︸ ︷︷ ︸
complexity penalty

+ (m− 1) ln(1− e−γ)︸ ︷︷ ︸
overhead per switch

− ln 2︸︷︷︸
parity

.

Proof. We saw in Section 2.3 that π is self-dual, so by symmetry (Lemma 2)
we may assume that z0 ≤ z1. As our first bound, we use π∗Λ ≥ πA∗Λ − ln 2.
Recall that the payoff πA∗Λ is defined as ln

∫
exp
(
δA∗Λ

)
dπ(δ). As the next

step, we re-parameterise the integral by introducing variables h, with hi :=
z0−

∑
1≤j≤i(−1)jδj . That is, hi is the logprice at the ith switch of δA. Then we

obtain a lower bound by restricting the domain of integration. For 1 ≤ i < m we
restrict hi ∈ [zi − γ, zi] for odd i and hi ∈ [zi, zi + γ] for even i. Thus, we keep
all prior mass on strategies that switch at logprices hi that are at most γ nats
short of the optimal switching logprice level zi. We restrict the last logprice to
hm ∈ [zm,∞) for even m and hm ∈ (−∞, zm] for odd m. This ensures that we do
not switch between hm−1 and zm. Thus, we only integrate over those strategies
that closely follow Λ, as illustrated by Figure 3. We first consider even m. Then

πA∗Λ ≥ ln

z1∫
z1−γ

eh1−h0π(h1 − h0)

z2+γ∫
z2

π(h1 − h2)

z3∫
z3−γ

eh3−h2π(h3 − h2) · · ·

· · ·
zm−1+γ∫
zm−1

π(hm−2 − hm−1)

∞∫
zm

ezm−hm−1π(hm − hm−1) dh



Apply the tail probability bound (Lemma 1(3)) to the innermost integral to get∫ ∞
zm

ezm−hm−1π(hm − hm−1) dhm ≥ ezm−hm−1π(zm − hm−1).

Since |hi − hi−1| ≤ ∆i and π decreases (Lemma 1(2)) we get

πA∗Λ ≥ ln
∏

1≤i≤m

π(∆i) +

ln

ezm−z0

z1∫
z1−γ

eh1

z2+γ∫
z2

e−h2

z3∫
z3−γ

eh3 · · ·
zm−2∫

zm−2−γ

ehm−2

zm−1+γ∫
zm−1

e−hm−1 dh


Now all integrals have become independent. Rewrite odd/even instances like∫ z1

z1−γ
eh1 dh1 = ez1(1− e−γ) and

∫ z2+γ

z2

e−h2 dh2 = e−z2(1− e−γ).

By rearranging terms we obtain

πA∗Λ ≥
∑

1≤i≤m

(zi − zi−1)+ −
∑

1≤i≤m

`(∆i) + (m− 1) ln(1− e−γ).

The case for odd m is analogous. ut

3.4 Establishing γ-Separation

Say we have a Λ with γ-separation, and hence a performance guarantee by
Theorem 3. If γ is small, then a better bound can be obtained by first regularising
Λ to a price function Λε with ε-separation for some ε > γ, and only then applying
the theorem. In this section we quantify the gain of going from γ = 0 to ε, and
then derive our main payoff bound by tuning ε.

The regulariser Λε is constructed by the algorithm shown in Figure 4a. The
key idea of the algorithm, implemented by lines 4–6, is to iteratively remove the
smallest fluctuation from z. This process is illustrated by Figure 4b. The solid
line shows a segment of the logprice function before regularisation. The logprice
difference between the two open circles is too small, i.e. < 2ε. The dashed line is
the logprice function resulting from fluctuation removal. The other lines of the
algorithm establish ε-separation at the boundaries of Λ.

For any sequence z = z0, . . . , zm we abbreviate the terms in the bound of
Theorem 3 that depend on z by defining g = g1, . . . , gm and G by

gi := (zi − zi−1)+ − `(∆i) and G :=
∑

1≤i≤m

gi.

We first study the effect of a single execution of lines 4–6.



1: u← (2ε−∆1)+ · sign(z1 − z0).
2: v ← (2ε−∆m)+ · sign(zm − zm−1).
3: z ← (z0, z1 + u, z2 + u, . . . , zm + u+ v) . Ensure ∆1,∆m ≥ 2ε
4: while the minimal ∆i is (strictly) less than 2ε do
5: z ← (z0, z1, . . . , zi−2, zi+1, . . . , zm) . See (b)
6: end while
7: z ← (z0, z1 − u, z2 − u, . . . , zm − u− v) . Reverse line 3
8: if ∆1 < ε then z ← (z0, z2, z3, . . . , zm) . Ensure ∆1 ≥ ε
9: if ∆m < ε then z ← (z0, z1, . . . , zm−2, zm) . Ensure ∆m ≥ ε

(a) ε-Pruning Algorithm (b) Regularise

Fig. 4: ε-Pruning Algorithm and its main regularisation

Lemma 3. Let z◦ and z† be the sequences before and after line 5. Then

G† −G◦ ≥ (m◦ −m†) min
{

0, `(2ε)− ε
}

Proof. Let i be the index of the minimal ∆◦i . Let l = ∆◦i−1, c = ∆◦i and r = ∆◦i+1,

so that ∆†i−1 = l + r − c and 2ε > c ≤ l, r. By definition G† −G◦ equals(
l + r − c− `(l + r − c)

)
−
(
l + r − `(l)− `(c)− `(r)

)
if zi−1 ≤ zi, or(

−`(l + r − c)
)
−
(
c− `(l)− `(c)− `(r)

)
if zi−1 ≥ zi.

In either case G† −G◦ simplifies to −c− `(l + r − c) + `(l) + `(c) + `(r). Since
` is concave, the worst-case values for l and r are c. For the same reason, the
worst-case value for c is either 0 or 2ε. Then since ` is nonnegative

G† −G◦ ≥ 2`(c)− c ≥ 2 min{`(0), `(2ε)− ε} ≥ 2 min{0, `(2ε)− ε}. ut

Now fix ε ≥ 0. Let zε = zε0, z
ε
1, . . . , z

ε
mε be the result of applying Algorithm 4a

with parameter ε to the sequence z of local extrema of Λ, and let Λε be any
continuous function with local extrema zε. By construction Λε has ε-separation
and regularises Λ. Theorem 3 gives us a bound on the payoff in terms of Λε. We
now show how to get a bound in terms of the original Λ.

Theorem 4 (Enforcing ε-Separation). For all ε ≥ 0 such that `(2ε) < ε

Gε −G ≥
(
m−mε

)(
`(2ε)− ε

)
− 2`(2ε).

Proof. Let z+, z?, z− be the sequences after lines 3, 6 and 7 of Algorithm 4a.
Thus the algorithm produces (denoted →) in order

z → z+ → z? → z− → zε.

with numbers of blocks m = m+ ≥ m? = m− ≥ mε. By Lemma 3 G? − G+ ≥(
m+ −m?

)(
`(2ε)− ε

)
. It thus remains to show that

(G+ −G) + (G− −G?) + (Gε −G−) ≥ (m? −mε)
(
`(2ε)− ε

)
− 2`(2ε).



We have G+ −G = g+1 − g1 + g+m+ − gm, G− −G? = g−1 − g?1 + g−m− − g
?
m− and

Gε−G− =

{
gε1 − g−1 − g

−
2 if ∆−1 < ε,

0 otherwise,
+

{
gεmε − g−m− − g

−
m−−1 if ∆−m− < ε,

0 otherwise.

These three expressions are symmetric in the first and last element of the se-
quences concerned. The contributions of the first elements are

g+1 − g1 = u+ − `
(
∆1 + |u|

)
+ `(∆1), (3)

g−1 − g?1 = − u+ − `(∆−1 ) + `
(
∆−1 + |u|

)
, (4)

gε1 − g−1 − g
−
2 = −∆−1 + `(∆−1 ) + `(∆−2 )− `(∆−2 −∆

−
1 ). (5)

If ∆−1 ≥ ε then no element is dropped in line 8. The sum of (3) and (4) equals

−`
(
∆1 + |u|

)
+ `(∆1)− `(∆−1 ) + `

(
∆−1 + |u|

)
≥ −`(2ε).

Since ` increases the last two terms are positive and can be dropped from the
bound; the remaining expression is increasing in ∆1 by concavity of ` and is
decreasing in |u|. Substitute the worst-case values ∆1 = 0 and |u| = 2ε.

If on the other hand ∆−1 < ε then one element was dropped in line 8. In this
case the sum of (3)–(5) equals

−`
(
∆1 + |u|

)
+ `
(
∆−1 + |u|

)
+ `(∆1)−∆−1 + `(∆−2 )− `(∆−2 −∆

−
1 ) ≥ −∆−1 .

The lower bound is obtained by cancelling the first two terms and the last two
terms since ` is increasing and 0 ≤ ∆1 ≤ ∆−1 . Since ` is nonnegative, we omit
the third term as well. We then use −∆−1 ≥ − ε =

(
`(2ε)− ε

)
− `(2ε).

The bound for the contribution of the final elements is analogous. In each
case, a dropped intermediate elements contributes at most `(2ε) − ε, while the
borders lose at most `(2ε) each. ut

We now put everything together, and in particular we optimise the value of ε.

Theorem 5 (Payoff Bound). Fix logprice functions Λ and Λ′, the latter with
associated z′, m′ and ∆′ as in Definition 1. If Λ′ 4 Λ then

π∗Λ ≥
∑

1≤i≤m′
(z′i − z′i−1)+ −

∑
1≤i≤m′

`(∆′i)− (m′ − 1)cπ − ln 2− 2επ,

where επ is the unique solution to π(2ε) = 1
eε−1 , and cπ = − ln(1− e−επ ).

Proof. For each ε ≥ 0 with `(2ε) < ε

π∗Λ ≥ π∗Λ′ ≥ π∗Λε ≥ Gε + (mε − 1) ln(1− e−ε)− ln 2

≥ G′ + (mε − 1) ln(1− e−ε) + (m′ −mε)
(
`(2ε)− ε

)
− 2`(2ε)− ln 2

≥ G′ + (m′ − 1) min
{

ln(1− e−ε), `(2ε)− ε
}
− 2`(2ε)− ln 2.

The inequalities are twice Theorem 2, then Theorem 3, then Theorem 4. To
complete the proof we set ε to equalise the arguments of the minimum. ut

Typical values for επ and cπ are shown in Table 1.



4 Implementation

The following algorithm implements the strategy π. For arbitrary prior densities
it runs in O(T 2) time. For exponential priors, we reduce the running time to
O(T ). The key to efficiency is the independent product form of π, which renders
the last switching price a sufficient statistic.

For concreteness, we measure discrete time in days. As its data structure, the
algorithm maintains a set of bank accounts. Each bank account has a balance,
a type that is either A or B, and a birthday. The balance of type A accounts is
measured in shares, whereas that of type B accounts is measured in cash.

On day zero the initial unit cash is divided evenly into two bank accounts:
one account of type B with half a unit of cash, and one account of type A with
1
2 exp(−Λ(0)) shares, i.e. half a unit of cash worth of shares at the initial logprice.

The algorithm then proceeds as follows. Each day t = 1, 2, . . . the new price
Λ(t) is announced. The algorithm creates a single new bank account with birth-
day t. If Λ(t − 1) ≤ Λ(t), then the new account is of type B, and a portion of
the shares in existing accounts of type A is sold to fill it with cash. On the other
hand if Λ(t−1) ≥ Λ(t), then a new account of type A is endowed with shares by
investing a fraction of the capital of existing accounts of type B. In either case,
the amount traded reestablishes the following invariant. At the end of day t:

– Each account of type A that was created with c shares on birthday i has
balance c

∫∞
λ
π(h) dh, where λ = maxi≤j≤t Λ|ji .

– Each account of type B that was created with capital c on birthday i has
balance c

∫∞
λ
π(h) dh, where λ = maxi≤j≤t−Λ|ji .

To see how this works, consider an A-type account with birthday i and initial
balance c, and assume that the invariant was maintained at the end of day t−1.
First, note that it can only become violated if the maximum changes, that is, if
Λ|ti exceeds the previous maximum λ = maxi≤j<t Λ|ji . Then the balance still is
c
∫∞
λ
π(h) dh but should become c

∫∞
Λ|ti

π(h) dh. The fraction

1−

∫∞
Λ|ti

π(h) dh∫∞
λ
π(h) dh

=

∫ Λ|ti
λ

π(h) dh∫∞
λ
π(h) dh

= π
(
H ≤ Λ|ti

∣∣H ≥ λ) (6)

of the balance must be sold to reestablish the invariant, and the resulting cash
is transferred to the new account. Note that we only query π via its cumulative
distribution function.

Complexity Analysis. After t days, there are t+2 bank accounts to maintain,
and each bank account potentially requires work each round. Thus, trading for
T days takes O(T 2) time and O(T ) space.

For exponential priors we can do better by merging several bank accounts into
a single account with the sum of their balances. This is because for memoryless
priors, the fraction (6) to be traded away does not depend on the birthday i,
but only on the maximum λ, allowing us to merge bank accounts with the same
maximum. Now observe that all bank accounts that are tapped to reestablish
the invariant share the same maximum afterwards, and can hence all be merged.



This means that a bank account requires work at most once, namely when it is
merged away. By maintaining two stacks of bank accounts, one for each type,
each ordered by the maximum λ, the running time is brought down to O(T ).
Since we do not know when merges happen, the space requirement is still O(T ),
and the running time is amortised O(1) per day.

5 Conclusion

We presented a simple online algorithm that can be applied to two-way trad-
ing, but also to prediction with expert advice, data compression and hypothesis
testing (see Section 1). Compared to the many hedging algorithms described in
the literature, our approach has two novel properties. First, the overhead of our
algorithm is independent of the times at which prices are processed, and second,
our bound is free of any conditions on the evolution of the price of the asset,
and is parameterised either by the asset price function itself or by a regularised
model of it.

The surprisingly simple implementation (Section 4) processes a sequence of
T asset prices in O(T 2) time and O(T ) space. The algorithm models the scale of
the fluctuations of the price using a density function on [0,∞); if an exponential
density is employed, the running time is reduced to O(T ).
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