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Abstract

We consider online trading in a single security with the objective of getting rich when its price ever exhibits

a large upcrossing, without risking bankruptcy. We investigate payoff guarantees that are expressed in terms

of the extremity of the upcrossings. We obtain an exact and elegant characterisation of the guarantees that

can be achieved. Moreover, we derive a simple canonical strategy for each attainable guarantee.
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1. Introduction

Initial price ω0 = 1.

Starting capital K0 = 1.

For t = 1, 2, . . .

• Investor takes position St ∈ R.

• Market reveals price ωt ≥ 0.

• Kt := Kt−1 + St(ωt − ωt−1)

Figure 1: Simple trading protocol

We consider the simplest trading setup, where an investor

trades in a single security as specified in Figure 1. An in-

tuitive rule of thumb is to buy when the price is low, say a,

and sell later when the price is high, say b. Trading success-

fully in such a manner exploits the so-called upcrossing [a, b]

and secures payoff b/a. In practice we do not know in ad-

vance when a stiff upcrossing will occur. Still, we can ask for

a strategy whose payoff scales nicely with the extremity of

any upcrossing present. A financial advisor, to express that

her secret strategy approximates this ideal, may publish a

function G(a, b) and promise that her strategy will

keep our capital above G(a, b) for each upcrossing [a, b]

Before trusting her to manage our capital, we would like to answer the following questions:

1. Should we believe her? Is it actually possible to guarantee G?

2. Is she ambitious enough? Or can one guarantee strictly more than G?
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3. Do we need her? Can we reverse-engineer a strategy to guarantee G ourselves?

The contribution of this paper is a complete resolution of these questions. We characterise the achievable

guarantees, and the admissible (or Pareto optimal, i.e. not strictly dominated) guarantees. We construct,

for each achievable G, a relatively simple strategy that achieves it.

1.1. Related Work

This work is a joint sequel to two lines of work. We think of the first line as a complete treatment of

the goal of selling high (without buying low first), and of the second line as intuitive strategies for iterated

trading. Let us summarise the material that we will use from each.

1.1.1. Sell high

Guarantees for trading once (selling at the maximum) were completely characterised by Dawid et al.

(2011). The results are as follows. We call an increasing right-continuous function F : [1,∞) → [0,∞)

a candidate guarantee. A candidate guarantee F is an adjuster if there is a strategy that ensures Kt ≥

F (maxs ωs) for every price evolution ω0, . . . , ωt. An adjuster F strictly dominates another adjuster F ′ if

F (y) ≥ F ′(y) for all y, with F (y) > F ′(y) for some y. An adjuster that is not strictly dominated is called

admissible. The goal is to find adjusters that are close to the unachievable Fideal(y) := y. What can be

achieved is characterised as follows:

Theorem 1 (Characterisation). A candidate guarantee F is an adjuster iff∫ ∞
1

F (y)

y2
dy ≤ 1 (1)

Moreover, it is admissible iff (1) holds with equality.

This elegant characterisation gives a simple test for adjusterhood. We can get reasonably close to Fideal, for

example using the adjusters

F (y) := αy1−α for some 0 < α < 1 or F (y) :=
y2 ln(2)

(1 + y) ln(1 + y)2
.

The following decomposition allows us to reverse engineer a canonical strategy for each adjuster F . For

each price level u ≥ 1, consider the threshold guarantee Fu(y) := u1{y≥u}, which is an admissible adjuster

that is witnessed by the strategy Su that takes position 1 until the price first exceeds u and takes position

0 afterwards. With this definition we have:

Theorem 2 (Representation). A candidate guarantee F is an adjuster iff there is a probability measure

P on [1,∞) such that

F (y) ≤
∫
Fu(y)P (du),

again with equality iff F is admissible.
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In other words, we can witness any admissible adjuster F by the strategy SP :=
∫
SuP (du), that is by

splitting the initial capital according to its associated measure P over threshold strategies Su and never

rebalancing.

1.1.2. Iterated trading

Intuitive trading strategies for iterated trading were proposed by Koolen and De Rooij (2010, 2013), and

their worst-case performance guarantees were analysed. We briefly review the construction and guarantees

specialised to the case of trading twice. The proposed strategies are of the form SQ :=
∫
Sα,βQ(dα,dβ),

where Q is some bivariate probability measure and Sα,β is the threshold strategy that does not invest initially,

subsequently invests all capital when the price first drops below α, and finally liquidates the position when

the price first exceeds β. Clearly Sα,β witnesses the guarantee

Gα,β(a, b) :=
β

α
1{a ≤ α and b ≥ β},

and so the full strategy SQ witnesses

GQ(a, b) :=

∫
Gα,β(a, b)Q(dα,dβ). (2)

(We omit the iterated trading bounds and run-time analysis, they are outside the scope of this paper.)

1.2. Climax

Intuitively, the two-threshold strategies Sα,β are the natural generalisation of the single-threshold strate-

gies Su. Since any univariate admissible adjuster is a convex combination of threshold guarantees, it is

natural to conjecture that a bivariate candidate guarantee G is an admissible adjuster iff G = GQ for some

Q.

Interestingly however, it turns out that mixture guarantees of the form (2) are typically strictly domi-

nated! Let us illustrate what goes awry with a simple example. Consider the mixture-of-thresholds guarantee

G defined by

G(a, b) :=
1

2
G1,2(a, b) +

1

2
G 1

2 ,1
(a, b) = 1{a ≤ 1 and b ≥ 2} + 1{a ≤ 1

2 and b ≥ 1}.

(These weights and thresholds are chosen for simplicity and are by no means essential.) We now argue that

G is strictly dominated, by showing that G can be guaranteed from initial capital 11
12 < 1, and hence that G

is strictly dominated by the adjuster 12
11G.

The smallest initial capital required to satisfy the guarantee G can be found from the tree of situations

shown in Figure 2a. We restrict Market to the seven price paths that can be obtained by moving starting

from the root (the left-most node labelled by 1) to the right along a branch of the tree to a leaf and reading off

the price labels inside the circles. We do not formally allow price ∞, but it can be replaced by a sufficiently

large number. The three intervals mentioned in the guarantee G and the inclusion relation between them
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Figure 2: Toy world

are displayed in Figure 2c. Figure 2b indicates which price paths upcross which intervals. We can now

compute the capital needed to guarantee G in each situation. First, as shown in Figure 2a, we assign to

each leaf (identified by the price path ω leading to it) the capital necessary to guarantee G on it, which is

by definition

XG(ω) := max
{
G(a, b)

∣∣ a, b s.t. ω upcrosses [a, b]
}

To label the intermediate situations we use backward induction. Let us first explain a single induction step,

which is known as binomial pricing.

p

K S pu
Ku

pd
Kd

Binomial pricing tutorial. Consider a toy world in which the current price is p, and

the future price is either pu > p in which case we want to guarantee payoff Ku, or

pd < p in which case we want to guarantee Kd. The minimal initial capital K from

which this is possible and the position S that achieves this are given by

K =
p− pd
pu − pd

Ku +
pu − p
pu − pd

Kd and S =
Ku −Kd

pu − pd
. (3)

To derive this, we minimise the objectiveK w.r.t. variablesK and S subject to the constraintsK+S(pu−p) ≥

Ku and K +S(pd− p) ≥ Kd. These constraints may be combined to Ku−K
pu−p ≤ S ≤

K−Kd
p−pd . This form allows

us to eliminate the variable S, resulting in the constraint Ku−K
pu−p ≤

K−Kd
p−pd , which we may reorganise to

(p− pd)Ku + (pu − p)Kd ≤ (pu − pd)K. Minimising K and back-substitution to obtain S now result in (3).

Using binomial pricing, we have labelled each internal situation in Figure 2a by the price (left) and position
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(right) obtained in backward fashion. Formally, this argument only shows that an initial capital of 11
12 is

necessary (although intuitively it is clear that the tree exhausts all possibilities, and so 11
12 is also sufficient).

Indeed, it is now easy to check that an initial capital of 11
12 is sufficient: the strategy that witnesses G from

initial capital 11
12 can be read off Figure 2a. Namely, we take position 1

3 at time 0 leaving 7
12 in cash. There

are two cases:

• If the price reaches 1
2 before reaching 2, we invest all our cash. This will make our position at least

7
6 + 1

3 = 3
2 . If the price reaches 1, we cash in 1 dollar leaving a position of at least 1

2 . If the price

reaches 2, we cash in another dollar. In all cases, we are left with at least XG(ω) at the end, where ω

is the realized price path.

• Now suppose the price reaches 2 before reaching 1
2 . Cashing in our position, we get at least 7

12 + 2
3 = 5

4

dollars. If the price reaches 1
2 , we take a position of 1

2 , which leaves at least 1 dollar in cash. If the

price reaches 2, we cash in another dollar. In all cases, we again are left with at least XG(ω) at the

end.

This argument shows that mixture guarantees can be strictly dominated. To get additional insight into

why, let us consider the mixture strategy corresponding to G, which evenly divides its capital between S1,2

and S 1
2 ,1

. The problem with this strategy is that it secures payoff 2 on price path ω = (1, 2, 1/2, 1, 0), but

one only needs XG(ω) = 1 to guarantee G there. The reason is that both small intervals [ 1
2 , 1] and [1, 2]

are upcrossed, but their union [ 1
2 , 2] is not. In other words, the mixture strategy gives an additional payoff

in certain circumstances that does not contribute to the guarantee. Since the binomial pricing formulas are

linear in the payoffs, reducing the payoff at any leaf reduces the required initial capital.

1.3. Overview of results

The previous section shows that the world is not simple, i.e. the intuitive characterization of guarantees is

incorrect. We now present our more subtle results. We say that a price sequence ω = (ω0, . . . , ωt) upcrosses

[a, b] if there are times 0 ≤ i ≤ j ≤ t such that ωi ≤ a and ωj ≥ b. We call a function G : D → [0,∞) with

domain

D :=
{

(a, b)
∣∣ 0 < a ≤ 1, b ≥ a

}
a candidate guarantee if it is upper semi-continuous, decreasing in its first argument and increasing in its

second argument. A candidate guarantee G is an adjuster if there is a strategy that ensures Kt ≥ G(a, b) for

every upcrossing [a, b] of every price evolution ω. An adjuster that is not strictly dominated is admissible.

In our characterisation of the admissible adjusters we will need the following technical condition. We say

that a candidate guarantee G is saturated if

G ≥ sG := inf

{
h ≥ 0

∣∣∣∣ ∫
G(a,b)≥h

da db

(b− a)2
<∞

}
, (4)
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where the integral is over D and inf ∅ = ∞ (by the σ-additivity of measures, the integral in (4) is infinite

when h = sG). It will follow from Theorem 3 below that G ∨ sG (we abbreviate binary minima to ∧ and

maxima to ∨) is a saturated adjuster for any adjuster G; in this sense any adjuster can be saturated by

increasing it to the point of saturation sG.

This allows us to demarcate precisely the achievable and optimal guarantees. The proof is split into

Fact 5, Theorem 6 and Corollary 7 below.

Theorem 3 (Characterisation). A candidate guarantee G is an adjuster iff∫ ∞
0

1− exp

(
−
∫
G(a,b)≥h

dadb

(b− a)2

)
dh ≤ 1. (5)

Moreover, G is admissible iff (5) holds with equality and G is saturated.

We saw in the previous section that a subtle temporal analysis is needed when reasoning about guarantees.

Although this is still true for the proof of this theorem, the result itself is elegantly timing-free.

We can rewrite (5) in terms of the second-argument upper inverse of G

G−1(a, h) := inf{b ≥ a | G(a, b) ≥ h} (6)

as follows: ∫ ∞
0

1− exp

(
−
∫ 1

0

1

G−1(a, h)− a
da

)
dh ≤ 1.

We also provide a canonical representation of each adjuster as a convex combination of elementary guar-

antees. These elementary guarantees are analogous to the threshold strategies of the univariate case in the

sense that they have just one non-zero payoff level. However, they do have richer geometric structure. A

closed set I ⊆ D is called north-west if (a, b) ∈ I implies (0, a] × [b,∞) ⊆ I. Some examples of north-west

sets are displayed in Figure 3. We associate to each north-west set its frontier

fI(a) := inf
{
b ≥ a

∣∣ (a, b) ∈ I
}
.

By the previous theorem, the following guarantee is an adjuster when I 6= ∅:

GI(a, b) :=
1{(a,b)∈I}

1− exp
(
−
∫
I

da db
(b−a)2

) =
1{fI(a)≤b}

1− exp
(
−
∫ 1

0
1

fI(a′)−a′ da′
) .

We call a non-empty set I ⊆ D admissible if either I = D or
∫
I

da db
(b−a)2 <∞. So the adjuster GI is admissible

iff the set I is admissible. A family (Ih)h≥0 of north-west sets is called nested if x ≤ y implies Ix ⊇ Iy. It is

called closely nested if it is nested and for each (a, b) ∈ D the set {h | (a, b) ∈ Ih} is closed (remember that

each Ih is closed by the definition of nested families). It is called admissible if each Ih is either admissible

or empty.
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Figure 3: Examples of north-west sets

Theorem 4 (Representation). A candidate guarantee G is an adjuster iff there are a probability measure

Q on (0,∞) concentrated on {h > 0 | Ih 6= ∅} and a closely nested family (Ih)h≥0 of north-west sets such

that

G(a, b) ≤
∫
GIh(a, b)Q(dh);

G is admissible iff this holds with equality and the family (Ih) is admissible.

This theorem gives us a means to construct a canonical strategy for each adjuster G. We first decompose

G into a probability measure Q and a closely nested family of north-west sets (Ih)h≥0 (with I0 = D playing

no useful role). We then find a strategy SIh witnessing GIh for each h. Finally, we recompose these strategies

to obtain the full strategy SG :=
∫
SIhQ(dh).

These two theorems parallel those of Dawid et al. (2011) with a twist. Whereas Dawid et al. (2011) de-

compose single-argument adjusters in terms of threshold guarantees (which have a single degree of freedom),

our elementary guarantees are parametrised by the geometrically much richer north-west sets.

1.4. Outline

The paper is structured as follows. In Section 2 we reduce finding guarantees to a particular instance of

probability-free option pricing. The actual option pricing is done in Section 3. Section 4 then discusses simple

example guarantees, and in particular proposes an efficiently implementable strategy with an approximately

ideal guarantee. The main proofs are delayed to Sections 5 and 6. We discuss the scope and applications of

our results in Section 7, where we sketch the implications for online probability prediction and hypothesis

testing.

2. Reduction to Option Pricing

We will make use of the definitions of probability-free option pricing, which we briefly review here. We

assume that the initial price ω0 is one, and that the investor starts with initial capital K0 = c. Trading

proceeds in rounds. In trading period t, the investor first chooses his position St, and then the new price ωt

is revealed. After T iterations, the investor has capital KT = c+
∑T
t=1 St(ωt − ωt−1). A trading strategy S
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assigns to each sequence of past prices ω<t = (ω0, . . . , ωt−1) a position S(ω<t) ∈ R. Let S ∗c ω denote the

payoff (i.e. final capital) of strategy S on price sequence ω. That is

S ∗c ω := c+

T∑
t=1

S(ω<t)(ωt − ωt−1).

In general, an option X assigns to each price sequence ω a real value X(ω). (We have already seen one

option, namely the payoff functional ω 7→ S ∗c ω.) The upper price of X, denoted E [X], is the minimal

initial capital necessary to super-replicate X, i.e.

E [X] := inf
{
c
∣∣ ∃ strategy S ∀ price sequence ω : S ∗c ω ≥ X(ω)

}
.

This definition allows us to price options at the start of the game. We may also wonder about the capital

necessary to super-replicate X half-way through the game, say after some past ω′ = (ω′0, . . . ω
′
t). This

so-called conditional upper price is given by

E [X|ω′] := inf
{
c
∣∣ ∃ strategy S ∀ price sequence ω : S ∗c ω ≥ X(ω′<tω)

}
,

where ω ranges over price sequences starting from ω0 = ω′t the current price. Note how the strategy only

trades on the future ω, whereas the option value depends on the past ω′.

3. Characterisation of candidate guarantees

Suppose we conjure up some desirable candidate guarantee G, and wonder whether it is an adjuster, and

if so, whether it is admissible. To decide this, we consider the option XG that assigns to each price sequence

ω the minimal payoff necessary to guarantee G on it:

XG(ω) := sup
[a, b] : ω upcrosses [a, b]

G(a, b) = max
0≤i≤j

1≥ωi≤ωj

G(ωi, ωj) (7)

We now connect adjusters and pricing:

Fact 5. A candidate guarantee G is an adjuster iff E[XG] ≤ 1.

This observation reduces testing for adjusterhood to option pricing. Next we compute the upper price

of XG. Section 5 is dedicated to the proof.

Theorem 6. The upper price of any candidate guarantee G is

E[XG] =

∫ ∞
0

1− exp

(
−
∫
G(a,b)≥h

dadb

(b− a)2

)
dh. (8)

In terms of G−1 this can be rewritten as

E[XG] =

∫ ∞
0

1− exp

(
−
∫ 1

0

1

G−1(a, h)− a
da

)
dh.

Using this pricing formula, we are also able to characterise admissibility.
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Corollary 7. A candidate G is an admissible adjuster iff E[XG] = 1 and G is saturated.

Proof. If E[XG] > 1 then G is not an adjuster. If E[XG] < 1 then G is strictly dominated by the

renormalised adjuster G/E[XG]. If E[XG] = 1 and G is not saturated it is strictly dominated by the

(saturated) adjuster G ∨ sG, where sG is the point of saturation defined in (4).

For the reverse, if E[XG] = 1 and G is saturated, then any strictly dominating candidate guarantee must

have upper price > 1 by the previous theorem, and cannot be an adjuster. Indeed, suppose G′ ≥ G and

G′(a, b) > G(a, b). Since G is upper semi-continuous, G′(a, b) > c + ε > c − ε > G(a′, b′) for some c, ε > 0,

a′ < a, and b′ > b. Our monotonicity assumption about G and G′ now implies G′(α, β) > c + ε > c − ε >

G(α, β) for all α ∈ (a′, a) and β ∈ (b, b′). To prove that E[XG′ ] > E[XG] = 1 it suffices to establish that∫
G′(α,β)≥h

dα dβ

(β − α)2
>

∫
G(α,β)≥h

dα dβ

(β − α)2

on a set of h of positive measure. This is obvious since {G′ ≥ h} ⊇ {G ≥ h} for all h, the difference

{G′ ≥ h} \ {G ≥ h} contains (a′, a) × (b, b′) for all h ∈ (c − ε, c + ε), and both integrals are finite for

h ∈ (c− ε, c+ ε). �

4. Example Adjusters

Before we go into proofs, we have a look at the consequences. We first recover the single-argument

adjuster characterisation from the double-argument version. We then consider guarantees expressed in a

single-parameter summary of [a, b]. Finally we really exploit both arguments, and design admissible adjusters

that closely approach the ideal payoff b/a with computationally efficient strategies.

4.1. Selling high: adjusters expressed in the maximum price

Theorem 6 implies the results of Dawid et al. (2011) (in particular Theorem 1) as a special case.

Proof (Alternative proof of Theorem 1). Let F : [1,∞)→ [0,∞) be an increasing right-continuous

function. Construct the saturated guarantee G(a, b) := F (b∨1) that ignores its first argument. By Theorem 6

E[XG] = F (1) +

∫ ∞
F (1)

1− exp

(
−
∫ 1

0

da

inf{b ≥ 1 | F (b) ≥ h} − a

)
dh = F (1) +

∫ ∞
F (1)

dh

inf{b ≥ 1 | F (b) ≥ h}
.

To evaluate the rightmost integral, we use the variable substitution h = F (y) (for y ≥ 1 and h ≥ F (1)). We

then employ integration by parts, and obtain

E[XG] = F (1) +

∫ ∞
1

1

y
dF (y) (9)

= F (1) +
F (y)

y

∣∣∣∣∞
1

+

∫ ∞
1

F (y)

y2
dy

=

∫ ∞
1

F (y)

y2
dy (10)
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This derivation assumes that F (∞)/∞ = 0. If F (∞)/∞ exists and is strictly positive, both (9) and (10)

are equal to ∞, and so E[XG] is still equal to (10). And if F (∞)/∞ does not exist, both (9) and (10) are

again equal to ∞: if one or both of them were finite, F (∞)/∞ would exist as their difference. �

4.2. Adjusters expressed in the size of the upcrossing

The two natural measures of the size of an upcrossing [a, b] are the length b − a and the ratio b/a. Let

us consider guarantees expressed in each statistic.

Length. Using the tricks from the previous section we see that candidate guarantees of the form G(a, b) =

F (b− a) have upper price

E [XG] =

∫ ∞
0

F (y)
e−1/y

y2
dy.

This is analogous to (10), but with a twist. In financial terms, the distribution with density e−1/y

y2 dy is the

risk-neutral measure of the largest upcrossed length. Similarly, y−2 dy from (10) is the risk-neutral measure

of the maximum price.

Ratio. We now show that guarantees of the form G(a, b) = F (b/a) for some increasing and unbounded F

have infinite upper price. Such highly desirable guarantees are unfortunately way too good to be true: they

cannot be made adjusters even by re-normalisation. For simplicity assume that F is invertible. Then

G−1(a, h) = aF−1(h),

so that E[XG] =∞, because∫ 1

0

1

G−1(a, h)− a
da =

∫ 1

0

1

a(F−1(h)− 1)
da = ∞.

Other impossibility results follow from the same argument. For example, the intuitively modest candidate

G(a, b) = bp/aq has infinite upper price for any p, q > 0.

4.3. Approximately ideal adjusters

Our goal is to secure payoff close to the ideal b/a. The previous section shows that we cannot simply

dampen the ratio b/a itself, but must make essential use of both arguments. A simple admissible adjuster

that approaches the ideal is

G(a, b) =
(b− a)p

aq

(p−qp )p

Γ(1− p)

for any 0 ≤ q < p < 1 (e.g. 0.0145 (b−a)0.9/a0.8 will be an adjuster). The results in Section 5.3 below imply

that this guarantee is witnessed by the strategy that in situation ω with minimum price m takes position

S(ω) =
(p− q)
m1−p+q Φ

(
m

p−q
p(

XG(ω)Γ(1− p)
)1/p

)

10



where Φ(x) =
∫ x
0
t−pe−t dt

Γ(1−p) is the cumulative distribution function of the Gamma distribution (with shape

1 − p and scale 1). This function can be evaluated to arbitrary precision by many computer mathematics

support systems. Note that XG(ω) and m can be maintained incrementally; when the next price r is revealed

m(ω, r) = min
{
m(ω), r

}
XG(ω, r) = max

{
XG(ω), G(m(ω, r), r)

}
.

This admissible adjuster is hence extremely attractive. It approximates the ideal guarantee, and its strategy

can be implemented efficiently.

5. Proof of Theorem 6

In this section we prove the characterisation theorem. We first give the intuition, and then prove the

lower bound by constructing a strategy for Market and the upper bound by constructing a strategy for

Investor.

5.1. Intuitive picture

Say we restrict Market to price sequences of some fixed length T that either increase or decrease each time

step by ±2−n. Then we can label each possible price path ω by XG(ω), the required capital to guarantee G

on it, and apply binomial pricing as before in backward fashion to determine the upper price of G in this

restricted world. We find that the upper price is the expected value of XG under a random walk that takes

steps ±2−n with equal probability, and that is stopped at zero.

By letting T →∞ and n→∞ we get sharper lower bounds on the upper price. Even though we do not

consider trading in continuous time, we do find that the upper price is the expected value of XG when price

paths are sampled from Brownian motion (again stopped at zero).

This limit still has the built-in restriction that Market does not produce price paths with jumps. In-

terestingly, as we will show in this section, this limit-based lower bound is met (by the limit strategy for

Investor). This proves in particular that Market cannot make adversarial use of price jumps. Note that this

fact does not hold for option pricing in general, but it does hold for our particular option XG.

It will be convenient to prove the following more general statement.

Theorem 8. Fix any candidate guarantee G and situation σ = (ω0, . . . , ωs). Let us abbreviate the current

price to r := ωs, the lowest observed price to m := mini=0,...,s ωi, and the minimal capital needed to satisfy

G at time s to C := XG(σ) (see (7)). The conditional upper price of XG in situation σ is

E[XG|σ] = C +

∫ ∞
C

1− exp

(
−
∫
G(a∧m,b)≥h
0<a≤r ; a≤b

dadb

(b− a)2

)
dh. (11)
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The above equation (11) may also be written using G−1 as

E[XG|σ] = C +

∫ ∞
C

1− G−1(m,h)− r
G−1(m,h)−m

exp

(
−
∫ m

0

da

G−1(a, h)− a

)
dh.

The proof consists of two parts. For the lower bound (≥) we construct an adversarial Market based on

random walks. For the upper bound (≤) we construct a strategy for Investor. It is quite surprising that

these bounds meet, since these markets are generally highly incomplete. Our method is similar to that

of Vovk (2012), who derives option prices assuming continuous price paths. We are not aware of general

probability-free option pricing results that allow discontinuous price processes.

5.2. Lower bound from Market strategy

We will find a lower bound on the conditional upper price E[XG|σ] of the optionXG using a finite up/down

scheme. For a natural number n, we discretise the vertical price axis in bins of size 2−n. Consider the

following restricted Market starting from time s+1. At each discrete time step t > s we have ωt = ωt−1±2−n,

where ωs is understood to be R2−n with R := bωs2nc (rather than the real ωs, so that prices from time

s + 1 are indeed multiples of 2−n). Define the stopping time τ to be the least time such that ωτ = 0. On

run ω, we desire to superreplicate XG, which can be rewritten as

XG(ω) = max
0≤i≤j≤τ(ω)

1≥ωi≤ωj

G(ωi, ωj)

We desire to lower bound the conditional upper price of XG for the restricted Market. By binomial pricing,

this price will be the expected value under a coin flip price process (formally, we explained binomial pricing

only for finite games, but the extension to an infinite horizon is easy: consider a game lasting T rounds after

which the price ω is frozen and then let T →∞). That is, the option’s price will be at least

E
[
XG

(
ω1, . . . , ωs, 2

−n(R+ ξ1), 2−n(R+ ξ1 + ξ2), . . . , 2−n(R+ ξ1 + · · ·+ ξτ )
)]
,

where the regular expectation E refers to ξs being independent random variables taking values ±1 with

equal probabilities and the term ξτ should be ignored when τ =∞. (We say “at least” since ωs can exceed

R2−n.) As a first step, observe that what is important are the incremental global minima of ω, and their

subsequent maxima. Set M := dm2ne. We have that incremental minima are reached at the levels k2−n,

k = 1, . . . ,M − 1, in decreasing order.

Define ik = ik(ω), k = 1, . . . ,M − 1, to be the largest i such that, after hitting level k2−n at time t > s,

ω rises to level (k + i)2−n before hitting level (k − 1)2−n. Define iM = iM (ω) to be the largest i such that,

after time s, ω rises to level (M + i)2−n before hitting level (M − 1)2−n. Now let

Ik := G
(
k2−n, (k + ik)2−n

)
for 1 ≤ k < M,

IM := G
(
m, (M + iM )2−n

)
and

12



L := max
k=1,...,M−1

Ik

so that

Ẽ[XG|σ] ≥ E (C ∨ L ∨ IM ) = C + E
(
(L ∨ IM − C)+

)
= C +

∫ ∞
C

P(L ∨ IM ≥ h) dh

= C +

∫ ∞
C

1− P(L < h)P(IM < h) dh, (12)

where Ẽ stands for upper probability under the assumed restrictions on Market. Upon hitting level k2−n,

where k < M , the probability that we rise to level (k + i)2−n (or higher) before we hit level (k − 1)2−n

equals 1
i+1 .1 We have P(ik ≤ j) = 1 − 1

2+j . Starting from the level R2−n, the probability that we rise to

level (R + i)2−n (or higher) before we hit level (M − 1)2−n (where M ≤ R) equals R−M+1
R−M+i+1 . We have

P(M + iM ≤ R+ j) = j+1
R−M+j+2 ; this formula is also true for M = R+ 1.

Since G(a, b) is right-continuous in b for each a, the infimum in (6) is attained for each h ≥ 0. We then

have G(a, b) < h for all b < G−1(a, h) and G(a, b) ≥ h for all b ≥ G−1(a, h). And we have G
(
a,G−1(a, h)

)
≥

h, with > if the level h does not occur at all. Then, for h ≥ C,

P(IM < h) = P
(
G
(
m, (M + iM )2−n

)
< h

)
= P

(
(M + iM )2−n < G−1(m,h)

)
= P

(
M + iM < 2nG−1(m,h)

)
=

1−R+ 2nG−1(m,h)

2−M + 2nG−1(m,h)

and, for k = 1, . . . ,M − 1,

P(Ik < h) = P
(
G
(
k2−n, (k + ik)2−n

)
< h

)
= P

(
(k + ik)2−n < G−1(k2−n, h)

)
= P

(
ik < −k + 2nG−1(k2−n, h)

)
= 1− 1

2− k + 2nG−1(k2−n, h)

Therefore,

lnP(L < h) = ln

M−1∏
k=1

P(Ik < h) = ln

M−1∏
k=1

(
1− 1

2− k + 2nG−1(k2−n, h)

)

1 A cute way to obtain this and similar statements is as follows. The price is a martingale, and hence so is the price stopped
at either level (k + i)2−n or (k − 1)2−n. Furthermore, such stopping happens almost surely. Writing p for the probability
of hitting the high level first, the fact that the expected stopped price equals the current price translates to the equation
k2−n = p(k + i)2−n + (1 − p)(k − 1)2−n, which is results in p = 1

i+1
.
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=

M−1∑
k=1

ln

(
1− 1

2− k + 2nG−1(k2−n, h)

)

≤ −
M−1∑
k=1

1

2− k + 2nG−1(k2−n, h)

= − 2−n
M−1∑
k=1

1

G−1(k2−n, h)− k2−n + 2× 2−n

≤ −
M−1∑
k=1

∫ (k+1)2−n

k2−n

da

G−1(a, h)− a+ 3× 2−n

≤ −
∫ M2−n

2−n

da

G−1(a, h)− a+ 3× 2−n

≤ −
∫ m

2−n

da

G−1(a, h)− a+ 3× 2−n
.

Plugging these inequalities into (12) results in the lower bound

C +

∫ ∞
C

1− G−1(m,h)− 2−n(R− 1)

G−1(m,h)− 2−n(M − 2)
exp

(
−
∫ m

2−n

da

G−1(a, h)− a+ 3× 2−n

)
dh

for E[XG|σ]. Letting n→∞, we obtain the inequality ≥ in (11). (Notice that we only need the convergence

of the above outer integral to the outer integral in (11) when the limits of integration C and ∞ are replaced

by C ∨ ε and D ∈ (C ∨ ε,∞), respectively, where ε is a positive constant.)

5.3. Upper bound from Investor strategy

Now we prove the inequality ≤ in (11). To prove this statement of the form E [XG|σ] ≤ φ(σ) we need

to (see Section 2) exhibit a trading strategy that, starting in situation σ = (σ0, . . . , σt) with capital φ(σ)

maintains its capital above XG(σω) for every finite sequence ω of future prices. Our approach will be to

find a strategy that in fact maintains the capital above φ(σω) ≥ XG(σω). To accomplish this, we only need

to consider how the capital and φ change over a single trading round. That is, in situation σ with capital

equal to φ(σ), we need to choose a position S that for every next price r ensures

φ(σ) + S(r − σt) ≥ φ(σ, r).

To argue that such an S exists, we first observe that a repeated last price does not change φ, so that

φ(σ) = φ(σ, σt). The core of the proof (presented below) lies in establishing that φ(σ, r) is concave in r. The

desired position S may then be taken equal to any super-derivative of φ(σ, r) at the current price r = σt.

Fix a situation σ = (σ0, . . . , σt) with minimum m > 0 and a next price r > 0 (we deal with the situation

r = 0 separately at the end). We now proceed to the concavity argument. For convenience, we rewrite the

right-hand side of (11) evaluated at σ, r as

φ(σ, r) =

∫ ∞
0

1− exp

(
−
∫
Gσ,r(a,b)≥h

da db

(b− a)2

)
dh (13)
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where the constant term C is incorporated as a diverging inner integral and the complex range of the inner

integral is absorbed into the renormalised guarantee

Gσ,r(a, b) := max
{
XG(σ), G(r ∧m, r), G(ra ∧m, rb)

}
.

Since arbitrary sums and integrals of concave functions are concave, it is sufficient to show that

exp

(
−
∫
Gσ,r(a,b)≥h

da db

(b− a)2

)
(14)

is convex in r > 0 for all h ≥ 0. First, if h ∈ [0, XG(σ)] the integral in (14) diverges, and (14) is identically

0 and hence convex. So now assume that h > XG(σ). We then argue that the expression in (14) equals

f(r) := exp

(
−
∫
G(ra∧m,rb)≥h

dadb

(b− a)2

)
= exp

−∫
G(a∧m,b)≥h

0<a≤r

da db

(b− a)2

 .

The difference between (14) and f(r) is the absence of the term G(r∧m, r) from the maximum. The equality

is hence obvious for r such that G(r∧m, r) < h. For r such that G(r∧m, r) ≥ h the integral in (14) diverges,

but so does that in f(r), and both are hence equal to zero. It remains to establish the convexity of f(r)

on r > 0. Our approach will be to find a sub-derivative f ′ (that is show f(p) − f(r) ≥ f ′(r)(p − r) for all

p, r > 0). First if f(r) = 0 we may take f ′(r) = 0 since f(p) ≥ 0 for all p. For f(r) > 0 we formally calculate

the first derivative in r, which equals

f ′(r) = −

(∫
G(r∧m,b)≥h

db

(b− r)2

)
f(r) =

−f(r)

G−1(r ∧m,h)− r
,

where the last equality uses f(r) > 0, so that G(r ∧m, r) < h and hence G−1(r ∧m,h) > r. (We might

have made some other assumptions in this calculation, such as the continuity of G in its first argument,

but this does not matter as we will never use the fact that f ′(r) is f ’s derivative.) To show that f ′(r) is a

sub-derivative we may split the integral inside f(p) (since f(r) > 0 the integral to r is finite) and rewrite

f(p) = f(r) exp

(
−
∫ p

r

∫
b:G(a∧m,b)≥h

db

(b− a)2
da

)
with the convention that

∫ p
r

= −
∫ r
p

for reversed limits r > p. We hence need to show(
exp

(
−
∫ p

r

∫
b:G(a∧m,b)≥h

db

(b− a)2
da

)
− 1

)
f(r) ≥ (p− r) −1

G−1(r ∧m,h)− r
f(r)

which may be reorganised as

exp

(
−
∫ p

r

∫
b:G(a∧m,b)≥h

db

(b− a)2
da

)
≥ G−1(r ∧m,h)− p

G−1(r ∧m,h)− r
.

Since the left-hand side is nonnegative and G−1(r ∧m,h) > r, this is trivial for G−1(r ∧m,h) ≤ p. If on

the other hand G−1(r ∧m,h) > p we may rewrite the requirement further to∫ p

r

∫
b:G(a∧m,b)≥h

db

(b− a)2
da ≤ log

(
G−1(r ∧m,h)− r
G−1(r ∧m,h)− p

)
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But this follows from a simple property of G. For if r ≤ p then we may make the left-hand side larger by

replacing G(a ∧m, b) with the larger G(r ∧m, b). And if r > p then the sign is negative, and we may make

the left-hand side larger by replacing G(a∧m, b) with the smaller G(r∧m, b). In both cases, computing the

integral gives∫ p

r

∫
b:G(r∧m,b)≥h

db

(b− a)2
da =

∫ p

r

da

G−1(r ∧m,h)− a
= log

(
G−1(r ∧m,h)− r
G−1(r ∧m,h)− p

)
as desired. (The last calculation uses the fact that G−1(r ∧m,h) is outside the interval of integration in a.)

Finally, we need to argue that this strategy works when the next price drops to r = 0. In that case

XG(σ, 0) = XG(σ). Since the strategy ensured capital ≥ XG(σ, r) ≥ XG(σ) for all r > 0, the resulting

capital at r = 0 must still exceed XG(σ) as required.

6. Proof of Theorem 4

In this section we prove the representation theorem.

6.1. From north-west sets to adjusters

Say (Ih)h≥0 is a closely nested family of north-west sets and Q is a probability measure on (0,∞)

concentrated on {h | Ih 6= ∅}. We now argue that

G(a, b) :=

∫ ∞
0

GIh(a, b)Q(dh)

is an adjuster (when we write
∫ y
x

we mean
∫

[x,y]
unless x = 0 or y =∞: 0 and ∞ are not included into the

interval of integration). It is a candidate guarantee; it is upper semi-continuous since all its super-level sets

are closed and it is decreasing-increasing since each super-level set is north-west. It is an adjuster, witnessed

by the strategy that splits the capital according to Q over strategies SIh . If, in addition, all non-empty Ih

are admissible, Lemmas 9 and 10 below establish that G has unit upper price and is saturated. Admissibility

then follows from Theorem 3.

Lemma 9. If (Ih)h≥0 is a closely nested family of north-west sets and Q is a probability measure on (0,∞)

concentrated on {h > 0 | Ih 6= ∅}, then G(a, b) =
∫
GIh(a, b)Q(dh) has (5) with equality.

Proof. ≤ 1 in (5) follows from G being an adjuster. We argue ≥ 1.

For each h the set Ih is contained in the super-level set {(a, b) | G(a, b) ≥ h′} where

h′ :=

∫ h

0

1

1− exp
(
−
∫
Ih

da db
(a−b)2

)Q(dh) (15)

(with 1
0 understood to be 0). Indeed, if (a, b) ∈ Ih, we have

G(a, b) =

∫
GIh(a, b)Q(dh) =

∫
1{(a,b)∈Ih}Q(dh)

1− exp
(
−
∫
Ih

da db
(b−a)2

) ≥ ∫ h

0

Q(dh)

1− exp
(
−
∫
Ih

da db
(b−a)2

) = h′ (16)
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(the same symbol h plays two different roles in this chain, the upper limit of integration and the dummy

variable, but this should not lead to confusion). First we give an informal argument that best conveys the

intuition. It follows from (15) that

dh′ =
1

1− exp
(
−
∫
Ih

da db
(b−a)2

)Q(dh).

With this substitution∫ ∞
0

1− exp

(
−
∫
G(a,b)≥h′

da db

(b− a)2

)
dh′ ≥∫ ∞

0

(
1− exp

(
−
∫
Ih

da db

(b− a)2

))
1

1− exp
(
−
∫
Ih

da db
(b−a)2

)Q(dh) = 1 (17)

as desired.

Since the family (Ih) is closely nested, the decreasing function
∫
Ih

da db
(b−a)2 is left-continuous in h. Indeed,

if it is not, say at a point h = h0 > 0, we have Ih0
6= Ih0−, where Ih0− := ∩h<h0

Ih; for any point

(a, b) ∈ Ih0− \ Ih0
, the set {h | (a, b) ∈ Ih} contains all h < h0 but does not contain h0, and so is not closed.

To formalize the argument (17), we rewrite the second integral
∫∞

0
in (17) as

∫∞
0
f(h)µ(dh), where

f(h) := 1− exp

(
−
∫
Ih

da db

(b− a)2

)
, µ(dh) :=

1

1− exp
(
−
∫
Ih

da db
(b−a)2

)Q(dh).

The function f is left-continuous and decreasing; therefore, it is upper semi-continuous. The measure µ is

σ-finite. Analogously, the first integral
∫∞

0
in (17) can be written as

∫∞
0
g(h′) dh′, where g is a decreasing

function. Our goal is to prove the inequality in∫ ∞
0

g(h′) dh′ ≥
∫ ∞

0

f(h)µ(dh) = 1.

We replace
∫∞

0
f(h)µ(dh) by a corresponding Lebesgue sum, which can be made arbitrarily close to 1.

Namely, divide the range of f , which we take to be [0,∞) (rather than, say, [0, 1]), into the intervals

[0, ε), [ε, 2ε), . . . of size ε, and let (xi, yi] := f−1([(i − 1)ε, iε)) for i = 1, 2, . . .; (xi, yi] will form a partition

of [0,∞) with the rightmost element of the partition, (x1, y1) = (x1,∞), being the only exception to our

notation (xi, yi]. (Some of the (xi, yi] may be empty but otherwise they will be closed on the right and open

on the left, by the upper semi-continuity of f , apart from the exception mentioned earlier.) By monotone

convergence
∑∞
i=1(i − 1)εµ((xi, yi]) →

∫
f dµ as ε → 0 (say geometrically). By the definition (15) of h′ we

have
∞∑
i=1

(i− 1)εµ((xi, yi]) =

∞∑
i=1

(i− 1)ε(y′i − x′i) ≤
∞∑
i=1

g(y′i)(y
′
i − x′i) ≤

∫ ∞
0

g(h′) dh′

(where all the sums are in fact finite), and it remains to let ε→ 0. �
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Lemma 10. If (Ih)h≥0 is an admissible closely nested family of north-west sets and Q is a probability

measure on (0,∞) concentrated on {h > 0 | Ih 6= ∅} then G(a, b) =
∫
GIh(a, b)Q(dh) is saturated.

Proof. First observe that {(a, b) | G(a, b) > h′} ⊆ Ih ⊆ {(a, b) | G(a, b) ≥ h′} under the correspondence

(15) (the first inclusion follows from (16) with ≤ in place of ≥, which holds for (a, b) /∈ Ih). Set tG := sup{h |

Ih = D} and notice that ItG = D (we saw in the previous proof that
∫
Ih

da db
(b−a)2 is a left-continuous function

of h). The right inclusion of the sandwich implies that sG ≥ t′G. The left inclusion in combination with the

right-continuity of h′ as function (15) of h now implies that sG = t′G: indeed, if sG > t′G, we have∫
G(a,b)≥sG

dadb

(b− a)2
≤
∫
G(a,b)>t′

dadb

(b− a)2
≤
∫
It

dadb

(b− a)2
<∞

for any t > tG such that t′G ≤ t′ < sG, which contradicts the fact that
∫
G(a,b)≥sG

da db
(b−a)2 =∞ (following from

the definition of sG and the σ-additivity of measures). Again applying the right inclusion, we can see that

{G ≥ sG} ⊇ ItG = D, which means that G is saturated. �

6.2. From adjusters to north-west sets

Say we have an adjuster G. We immediately assume that it is admissible, because the inadmissible case

follows by taking a dominating admissible adjuster. We now write it as a convex combination of closely

nested north-west adjusters. Consider the family of super-level sets

Ih :=
{

(a, b)
∣∣ G(a, b) ≥ h

}
.

Since G is a candidate guarantee, each Ih is north-west (in particular, closed). The family of Ih is closely

nested. As G is saturated, each non-empty Ih is admissible. By Theorem 6

GIh(a, b) =
1{(a,b)∈Ih}

1− exp
(
−
∫
G(a,b)≥h

da db
(b−a)2

)
is an admissible adjuster when Ih 6= ∅. Now construct the measure Q on (0,∞) with

Q(dh) :=

(
1− exp

(
−
∫
G(a,b)≥h

dadb

(b− a)2

))
dh.

Obviously Q is non-negative and concentrated on {h > 0 | Ih 6= ∅}. In addition, since G is an admissible

adjuster, Q integrates to 1 and hence is a probability measure. Finally, for each (a, b)∫ ∞
0

GIh(a, b)Q(dh) =

∫ ∞
0

1{(a,b)∈Ih} dh = G(a, b)

(with GIh understood to be 0 when Ih = ∅).

7. Discussion/Conclusion

We presented strategies for online trading that guarantee a large payoff when the price ever exhibits

a large upcrossing, without taking any risk. We obtained an exact and elegant characterisation of the

guarantees that can be achieved. We designed a guarantee that is close to ideal, and obtained an efficient

strategy.
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7.1. Applications

Our results are phrased in terms of finance. However, as we show in Theorem 4, a guarantee can always

be achieved by a strategy that neither sells short, i.e. takes a negative position St < 0, or uses leverage, i.e.

takes a position St ≥ Kt−1/ωt−1 that is more expensive than the capital. So the fraction of capital invested

Stωt−1/Kt−1 ∈ [0, 1] is a proper probability. We can therefore think of our strategies as maintaining weights

on two experts. If we substitute, in place of the price, the likelihood ratio between these two experts we

obtain online methods for probability prediction with the log loss function.

One application lies is hierarchical modelling, where we want to aggregate at each level of detail the

predictions of a model of that complexity, and the recursive combination of more refined models. This

construction drives for example the successful data compression method Context Tree Weighting by Willems

et al. (1995).

Another application is hypothesis testing, where a so-called null hypothesis is compared with an alter-

native hypothesis. Again, substituting the likelihood ratio for the price, securing a high payoff translates to

amassing evidence against the null (see, e.g. Shafer et al. 2011). The presence of a large upcrossing translates

back to the existence of a sub-interval of data on which the null looks particularly fishy. Our strategies would

report a fair and sharp measure of evidence in the presence of any such anomalous blocks. The advantage

of this method is that the loss of evidence (the adjustment) is expressed in terms of the evidential power of

the anomaly and not in its timing. A treatment of achievable guarantees parametrised by the block timing

can be found in the work of Adamskiy et al. (2012).

7.2. Downcrossings

A natural question is whether we can exploit the fact that a downcrossing [a, b] occurs, i.e. that the price

exceeds b before it drops below a. However, worst-case price paths for the univariate adjuster case always

eventually collapse to 0, thus downcrossing any [a, b] for 0 ≤ a ≤ b ≤ maxt ωt. Hence, the presence of a

downcrossing [a, b] only conveys to us the information that the maximum is at least b, and we find ourselves

back in the univariate adjuster case.

7.3. Future work

In this paper we focus on two-argument guarantees for buying once, then selling once. We are currently

working on a full analysis of multi-argument guarantees for iterated trading: both for a fixed number of

times and for arbitrary references. Another interesting direction is computational efficiency. What resources

are required to execute the strategy witnessing an arbitrary admissible adjuster G?
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