
Buy Low, Sell High

Wouter M. Koolen and Vladimir Vovk

Computer Learning Research Centre, Department of Computer Science, Royal
Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom

Abstract. We consider online trading in a single security with the ob-
jective of getting rich when its price ever exhibits a large upcrossing
without risking bankruptcy. We investigate payoff guarantees that are
expressed in terms of the extremity of the upcrossings. We obtain an ex-
act and elegant characterisation of the guarantees that can be achieved.
Moreover, we derive a simple canonical strategy for each attainable guar-
antee.
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1 Introduction

Initial price ω0 > 0
Starting capital K0 = 1.
For t = 1, 2, . . .
– Investor takes position St ∈ R.
– Market reveals price ωt ≥ 0.
– Kt := Kt−1 + St(ωt − ωt−1)

Fig. 1: Simple trading protocol

We consider the simplest trading setup,
where an investor trades in a single secu-
rity as specified in Figure 1. An intuitive
rule of thumb is to buy when the price is
low, say a, and sell later when the price is
high, say b. Trading successfully in such a
manner exploits the so-called upcrossing
[a, b] and secures payoff b/a. In practice
we do not know in advance when a stiff
upcrossing will occur. Still, we can ask for a strategy whose payoff scales nicely
with the extremity of the upcrossing present. A financial advisor, to express that
her secret strategy approximates this ideal, may publish a function G : R2 → R
and promise that her strategy will

keep our capital above G(a, b) for each upcrossing [a, b]

Before trusting her to manage our capital, we would like to answer the following
questions:

1. Should we believe her? Is it actually possible to guarantee G?
2. Is she ambitious enough? Or can one guarantee strictly more than G?
3. Can we reverse-engineer a strategy to guarantee G ourselves?

The contribution of this paper is a complete resolution of these questions. We
characterise the achievable guarantees, and the admissible (or Pareto optimal,
i.e. not strictly dominated) guarantees. We construct, for each achievable G, a
relatively simple strategy that achieves it.



1.1 Related Work

This work is a joint sequel to two lines of work. We think of the first line as a
complete treatment of the goal of selling high (without buying low first), and of
the second line as intuitive strategies for iterated trading. Let us summarise the
material that we will use from each.

Sell high Guarantees for trading once (selling at the maximum) were com-
pletely characterised in [1]. The results are as follows. We call an increasing
right-continuous function F : [1,∞)→ [0,∞) a candidate guarantee. A candidate
guarantee F is an adjuster if there is a strategy that ensures Kt ≥ F (maxs ωs)
for every price evolution ω0, . . . , ωt. An adjuster that is not strictly dominated is
called admissible. The goal is to find adjusters that are close to the unachievable
Fideal(y) := y. What can be achieved is characterised as follows:

Theorem 1 (Characterisation). A candidate guarantee F is an adjuster iff∫ ∞
1

F (y)

y2
dy ≤ 1 (1)

Moreover, it is admissible iff (1) holds with equality.

This elegant characterisation gives a simple test for adjusterhood. We can get
reasonably close to Fideal, for example using the adjusters

F (y) := αy1−α for some 0 < α < 1 or F (y) :=
y2 ln(2)

(1 + y) ln(1 + y)2
.

The following decomposition allows us to reverse engineer a canonical strategy
for each adjuster F . For each price level u ≥ 1, consider the threshold guarantee
Fu(y) := u1{y≥u}, which is an adjuster witnessed by the strategy Su that takes
position 1 until the price first exceeds u and 0 afterwards. With this definition
we have

Theorem 2 (Representation). A candidate guarantee F is an adjuster iff
there is a probability measure P on [1,∞) such that

F (y) ≤
∫
Fu(y) dP (u),

again with equality iff F is admissible.

In other words, we can witness any admissible adjuster F by the strategy SP :=∫
Su dP (u), that is by splitting the initial capital according to the associated

measure P (u) over threshold strategies Su and never rebalancing.



Iterated trading Intuitive trading strategies for iterated trading were proposed
in [2,3], and their worst-case performance guarantees were analysed. We briefly
review the construction and guarantees specialised to the case of trading twice.
The proposed strategies are of the form SQ :=

∫
Sα,β dQ(α, β), where Q is some

bivariate probability measure and Sα,β is the threshold strategy that does not
invest initially, subsequently invests all capital when the price first drops below
α, and finally liquidates the position when the price first exceeds β. Clearly Sα,β
witnesses the guarantee

Gα,β(a, b) :=
β

α
1{a ≤ α and b ≥ β},

and so the full strategy SQ witnesses

GQ(a, b) :=

∫
Gα,β(a, b) dQ(α, β). (2)

(We omit the iterated trading bounds and run-time analysis, they are outside
the scope of this paper.)

1.2 Climax

Intuitively, the dual threshold strategies Sα,β are the natural generalisation of
the single threshold strategies Su. Since any univariate admissible adjuster is a
convex combination of threshold guarantees, it is natural to conjecture that a
bivariate candidate guarantee G is an admissible adjuster iff G = GQ for some
Q.

Interestingly however, it turns out that mixture guarantees of the form (2)
are typically strictly dominated! Let us illustrate what goes awry with a simple
example. Consider the mixture-of-thresholds guarantee G defined by

G(a, b) :=
1

2
G1,2(a, b) +

1

2
G 1

2 ,1
(a, b) = 1{a ≤ 1 and b ≥ 2} + 1{a ≤ 1

2 and b ≥ 1}.

(These weights and thresholds are chosen for simplicity and are by no means
essential.) We now argue that G is strictly dominated, by showing that G can be
guaranteed from initial capital 11

12 < 1, and hence that G is strictly dominated
by the adjuster 12

11G.
The smallest initial capital required to satisfy the guarantee G can be found

from the tree of situations shown in Figure 2a. We restrict Market to the seven
price paths that can be obtained by moving starting from the root (the left-most
node labelled by 1) to the right along a branch of the tree to a leaf and reading
off the price labels inside the circles. Formally, we do not allow price ∞, but it
can be replaced by a sufficiently large number. The three intervals mentioned
in the guarantee G and the inclusion relation between them are displayed in
Figure 2c. Figure 2b indicates which price paths upcross which intervals. We
can now compute the capital needed to guarantee G in each situation. First, as
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Fig. 2: Toy world

shown in Figure 2a, we assign to each leaf ω the capital necessary to guarantee
G on it, which is by definition

XG(ω) := max
{
G(a, b)

∣∣ a, b s.t. ω upcrosses [a, b]
}

To label the intermediate situations we use backward induction. Let us first
explain a single induction step, which is known as binomial pricing.

p

K S pu
Ku

pd
Kd

Binomial pricing tutorial Consider a toy world in which the
current price is p, and the future price is either pu > p in which
case we want to guarantee payoff Ku, or pd < p in which case
we want to guarantee Kd. The minimal initial capital K from
which this is possible and the position S that achieves this are

K =
p− pd
pu − pd

Ku +
pu − p
pu − pd

Kd and S =
Ku −Kd

pu − pd
. (3)

Using binomial pricing, we have labelled each internal situation in 2b by the price
(left) and position (right) obtained in backward fashion. Formally, this argument
only shows that an initial capital of 11

12 is necessary (although intuitively it is
clear that the tree exhausts all possibilities, and so 11

12 is also sufficient). Indeed,
it is now easy to check that an initial capital of 11

12 is sufficient: the strategy that



witnesses G from initial capital 11
12 can be read off Figure 2a. Namely, we take

position 1
3 at time 0 leaving 7

12 in cash. There are two cases:

– If and when the price reaches 1
2 before reaching 2, we invest all our cash.

This will make our position at least 7
6 + 1

3 = 3
2 . If and when the price reaches

1, we cash in 1 dollar leaving a position of at least 1
2 . If and when the price

reaches 2, we cash in another dollar. In all cases, we are left with at least
XG(ω) at the end, where ω is the realized price path.

– Now suppose the price reaches 2 before reaching 1
2 . Cashing in our position,

we get at least 7
12 + 2

3 = 5
4 dollars. If and when the price reaches 1

2 , we take
a position of 1

2 , which leaves at least 1 dollar in cash. If and when the price
reaches 2, we cash in another dollar. In all cases, we again are left with at
least XG(ω) at the end.

This argument shows that mixture guarantees can be strictly dominated. To
get additional insight into why, let us consider the mixture strategy correspond-
ing to G, which evenly divides its capital between S1,2 and S 1

2 ,1
. The problem

with this strategy is that it secures payoff 2 on price path ω = (1, 2, 1/2, 1, 0), but
one only needs XG(ω) = 1 to guarantee G there. The reason is that both small
intervals [ 12 , 1] and [1, 2] are upcrossed, but their union [12 , 2] is not. In other
words, the mixture strategy gives an additional payoff in certain circumstances
that does not contribute to the guarantee. Since the binomial pricing formulas
are linear in the payoffs, reducing the payoff at any leaf reduces the required
initial capital.

1.3 Overview of results

The previous section shows that the world is not simple, i.e. the intuitive charac-
terization of guarantees is incorrect. We now present our more subtle results. We
call a function G : (0, 1] × (0,∞) → [0,∞) a candidate guarantee if it is upper
semi-continuous, decreasing in its first argument and increasing in its second
argument. We define the second-argument upper inverse of G by

G−1(a, h) := inf{b ≥ a | G(a, b) ≥ h}. (4)

Theorem 3 (Characterisation). A candidate guarantee G is an adjuster iff∫ ∞
0

1− exp

(∫ 1

0

1

a−G−1(a, h)
da

)
dh ≤ 1. (5)

Moreover, G is admissible iff (5) holds with equality.

We saw in the previous section that a subtle temporal analysis is needed when
reasoning about guarantees. Although this is still true for the proof of this the-
orem, the result itself is elegantly timing-free.

We also have a canonical representation in terms of convex combination of ele-
mentary guarantees. These elementary guarantees are analogous to the threshold
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strategies of the univariate case in the sense that they have just two payoff levels.
However, they do have richer geometric structure. A closed set I ⊆ (0, 1]×(0,∞)
is called north-west if (a, b) ∈ I implies (0, a]× [b,∞) ⊆ I. Some example north-
west sets are displayed in Figure 3. We associate to each north-west set its
frontier

fI(a) := inf
{
b ≥ a

∣∣ (a, b) ∈ I
}
.

By the previous theorem, the following guarantee is an admissible adjuster:

GI(a, b) :=
1{fI(a)≤b}

1− exp
(∫ 1

0
1

a′−fI(a′) da′
) .

A family (Ih)h≥0 of north-west sets is called nested if x ≤ y implies Ix ⊇ Iy.

Theorem 4 (Representation). A candidate guarantee G is an adjuster iff
there are a probability measure Q on [0,∞) and a nested family (Ih)h≥0 of north-
west sets such that

G(a, b) ≤
∫
GIh(a, b) dQ(h),

with equality iff G is admissible.

This theorem gives us a means to construct a canonical strategy for each
adjuster G. We first decompose G into a probability measure Q and a nested
family of north-west sets (Ih)h≥0. We then find a strategy SIh witnessing GIh
for each h. Finally, we recompose these strategies to obtain the full strategy
SG :=

∫
SIh dQ(h).

These two theorems parallel those of [1] with a twist. Whereas [1] decom-
poses single-argument adjusters in terms of threshold guarantees (which have a
single degree of freedom), our elementary guarantees are parametrised by the
geometrically much richer north-west sets.

1.4 Outline

The paper is structured as follows. In Section 2 we reduce finding guarantees to
a particular instance of probability-free option pricing. The actual option pricing



is done in Section 3. Section 4 then discusses simple example guarantees, and in
particular proposes an efficiently implementable strategy with an approximately
ideal guarantee. The main proofs are delayed to Sections 5 and 6. We discuss
the scope and applications of our results in Section 7, where we sketch the
implications for online probability prediction and hypothesis testing.

2 Reduction to Option Pricing

We will make use of the definitions of probability-free option pricing, which we
briefly review here. We assume that the initial asset price ω0 is one, and that
the investor starts with one unit of cash. Trading proceeds in rounds. In trading
period t, the investor first chooses his position St, and then the new price ωt is
revealed. After T iterations, the investor has capitalKT = 1+

∑T
t=1 St(ωt−ωt−1).

A trading strategy S assigns to each sequence of past prices ω<t = (ω0, . . . , ωt−1)
a position S(ω<t) ∈ R. Let S∗ω denote the payoff of strategy S on price function
ω. That is

S ∗ ω := 1 +

T∑
t=1

S(ω<t)(ωt − ωt−1).

We denote by S ∗c ω the payoff obtained by executing strategy S from initial
capital c instead of one.

In general, an option X assigns to each price function ω a real value X(ω).
(We have already seen one option, namely the payoff functional ω 7→ S ∗ ω.)
The upper price of X, denoted E [X], is the minimal initial capital necessary to
super-replicate X, i.e.

E [X] := inf
{
c
∣∣ ∃ strategy S ∀ price function ω : S ∗c ω ≥ X(ω)

}
.

This definition allows us to price options at the start of the game. We may also
wonder about the capital necessary to super-replicate X half-way through the
game, say after some past ω′ = (ω′0, . . . ω

′
t). This so-called conditional upper price

is given by

E [X|ω′] := inf
{
c
∣∣ ∃ strategy S ∀ price function ω : S ∗c ω ≥ X(ω′<tω)

}
.

where ω ranges over price functions starting from ω0 = ω′t the current price.
Note how the strategy only trades on the future ω, whereas the option value
depends on the past ω′.

3 Characterisation of candidate guarantees

Suppose we conjure up some desirable candidate guarantee G, and wonder
whether it is an adjuster, and if so, whether it is admissible. To decide this,
we consider the option XG that assigns to each price function ω the minimal
payoff necessary to guarantee G on it:

XG(ω) := sup
[a, b] : ω upcrosses [a, b]

G(a, b) = max
0≤i≤j

1≥ωi≤ωj

G(ωi, ωj) (6)



We now connect adjusters and pricing

Proposition 5. A candidate guarantee G is an adjuster iff E[XG] ≤ 1. More-
over, G is admissible iff E[XG] = 1.

Proof. The first equivalence holds by definition, and E[XG] < 1 clearly implies
inadmissibility. It follows from the pricing Theorem 6 below that a strictly dom-
inated adjuster must have upper price < 1. ut

This result reduces testing for adjusterhood to option pricing. Next we com-
pute the upper price of XG. Section 5 is dedicated to the proof.

Theorem 6. The upper price of any candidate guarantee G is

E[XG] =

∫ ∞
0

1− exp

(∫ 1

0

1

a−G−1(a, h)
da

)
dh.

4 Example Adjusters

Before we go into proofs, we have a look at the consequences. We first recover
the single-argument adjuster characterisation from the double-argument version.
We then consider guarantees expressed in a single-parameter summary of [a, b].
Finally we really exploit both arguments, and design admissible adjusters that
closely approach the ideal payoff b/a with computationally efficient strategies.

4.1 Selling high: adjusters expressed in the maximum price

Theorem 6 implies the results of [1] (in particular Theorem 1) as a special case.

Proof (Alternative proof of Theorem 1). Let F : [1,∞)→ [0,∞) be an increasing
right-continuous function. Construct the guarantee G(a, b) := F (b)1{b≥1} that
ignores its first argument. By Theorem 6

E[XG] =

∫ ∞
0

1− exp

(∫ 1

0

da

a− inf{b | F (b) ≥ h}

)
dh =

∫ ∞
0

dh

inf{b | F (b) ≥ h}
.

Using the variable substitution h = F (y) (for y ≥ 1 and h ≥ F (1)) and integra-
tion by parts, we obtain

E[XG] =

∫ F (1)

0

1

inf{b | F (b) ≥ h}
dh+

∫ ∞
F (1)

1

inf{b | F (b) ≥ h}
dh

= F (1) +

∫ ∞
1

1

y
dF (y) (7)

= F (1) +
F (y)

y

∣∣∣∣∞
1

+

∫ ∞
1

F (y)

y2
dy

=

∫ ∞
1

F (y)

y2
dy (8)



This derivation assumes that F (∞)/∞ = 0. If F (∞)/∞ exists and is strictly
positive, both (7) and (8) are equal to∞, and so E[XG] is still equal to (8). And
if F (∞)/∞ does not exist, both (7) and (8) are again equal to∞: if one or both
of them were finite, F (∞)/∞ would exist as their difference. ut

4.2 Adjusters expressed in the size of the upcrossing

The two natural measures of the size of an upcrossing [a, b] are the length b− a
and the ratio b/a. Let us consider guarantees expressed in each statistic.

Length Using the tricks from the previous section we see that candidate guar-
antees of the form G(a, b) = F (b− a) have upper price

E [XG] =

∫ ∞
0

F (y)
e−1/y

y2
dy.

This is analogous to (8), but with a twist. In financial terms, the distribution

with density e−1/y

y2 dy is the risk-neutral measure of the largest upcrossed length.

Similarly, y−2 dy from (8) is the risk-neutral measure of the maximum price.

Ratio We now show that guarantees of the form G(a, b) = F (b/a) for some
increasing and unbounded F have infinite upper price. Such guarantees are way
too good to be true: they can not be made adjusters even by re-normalisation.
For simplicity assume that F is invertible. Then

G−1(a, h) = aF−1(h),

so that E[XG] =∞, because∫ 1

0

1

a−G−1(a, h)
da =

∫ 1

0

1

a(1− F−1(h))
da = −∞.

Other impossibility results follow from the same argument. For example, the
intuitively modest candidate G(a, b) = bp/aq has infinite price for any p, q > 0.

4.3 Approximately ideal adjusters

Our goal is to secure payoff close to the ideal b/a. The previous section shows
that we cannot simply dampen the ratio b/a itself, but must make essential use
of both arguments. A simple admissible adjuster that approaches the ideal is

G(a, b) =
(b− a)p

aq

(p−qp )p

Γ (1− p)

for any 0 ≤ q < p < 1. The results in Section 5.2 below imply that this guarantee
is witnessed by the strategy that in situation ω with minimum price m takes
position

S(ω) =
(p− q)
m1−p+q Φ

(
m

p−q
p(

XG(ω)Γ (1− p)
)1/p

)



where Φ(x) =
∫ x
0
t−pe−t dt

Γ (1−p) is the cumulative distribution function of the Gamma

distribution (with shape 1 − p and scale 1). This function can be evaluated to
arbitrary precision by many computer mathematics support systems. Note that
XG(ω) and m can be maintained incrementally; when the next price r is revealed

XG(ω, r) = max
{
XG(ω), G(m(ω), r)

}
m(ω, r) = min

{
m(ω), r

}
.

This admissible adjuster is hence extremely attractive. It approximates the ideal
guarantee, and its strategy can implemented efficiently.

5 Proof of Theorem 6

In this section we prove the characterisation theorem. It will be convenient to
prove the following more general statement.

Theorem 7. Fix any candidate guarantee G and situation σ = (ω0, . . . , ωs).
Let us abbreviate the current price to r := ωs, the lowest observed price to m :=
mini=0,...,s ωi, and the minimal capital needed to satisfy G at time s to C :=
XG(σ) (see (6)). The conditional upper price of XG in situation σ is

E[XG|σ] = C +

∫ ∞
C

1− G−1(m,h)− r
G−1(m,h)−m

exp

(∫ m

0

da

a−G−1(a, h)

)
dh. (9)

The proof consists of two parts. For the lower bound we construct an adversarial
Market based on random walks. For the upper bound we construct a strategy for
Investor. It is quite surprising that these bounds meet, since these markets are
generally highly incomplete. Our method is similar to that of [4], which derives
option prices assuming continuous price paths. We are not aware of general
probability-free option pricing results that allow discontinuous price processes.

5.1 Lower bound from Market strategy

We will find a lower bound on the conditional upper price E[XG|σ] of the option
XG using a finite up/down scheme. For a natural number n, we discretise the
vertical price axis in bins of size 2−n. Consider the following restricted Market
starting from time s+1. At each discrete time step t > s we have ωt = ωt−1±2−n,
where ωs is understood to be R2−n, where R := bωs2nc (rather than the real
ωs). Define the stopping time τ to be least such that ωτ = 0. On run ω, we desire
to superreplicate XG, which can be rewritten as

XG(ω) = max
0≤i≤j≤τ(ω)
1≥ωi≤ωj

G(ωi, ωj)

We desire to lower bound the conditional upper price of XG for the restricted
Market. By binomial pricing, this price will be the expected value under a coin



flip price process (formally, we explained binomial pricing only for finite games,
but the extension to an infinite horizon is easy: consider a game lasting T rounds
after which the price ω is frozen and then let T → ∞). That is, the option’s
price will be at least

EXG

(
ω1, . . . , ωs, 2

−n(R+ ξ1), 2−n(R+ ξ1 + ξ2), . . . , 2−n(R+ ξ1 + · · ·+ ξτ )
)
,

where the regular expectation E refers to ξs being independent random variables
taking values ±1 with equal probabilities and the term ξτ should be ignored
when τ = ∞. (We say “at least” since ωs can exceed R2−n.) As a first step,
observe that what is important are the incremental global minima of ω, and
their subsequent maxima. Set M := dm2ne. We have that incremental minima
are reached at the levels k2−n, k = 1, . . . ,M − 1, in decreasing order.

Define ik = ik(ω), k = 1, . . . ,M − 1, to be the largest i such that, after
hitting level k2−n at time t > s, ω rises to level (k + i)2−n before hitting level
(k−1)2−n. Define iM = iM (ω) to be the largest i such that, after time s, ω rises
to level (M + i)2−n before hitting level (M − 1)2−n. Now let

Ik := G
(
k2−n, (k + ik)2−n

)
for 1 ≤ k < M,

IM := G
(
m, (M + iM )2−n

)
and

L := max
k=1,...,M−1

Ik

so that

Ẽ[XG|σ] ≥ E (C ∨ L ∨ IM ) = C + E
(
(L ∨ IM − C)+

)
= C +

∫ ∞
C

P(L ∨ IM ≥ h) dh

= C +

∫ ∞
C

1− P(L < h)P(IM < h) dh, (10)

where Ẽ stands for upper probability under the assumed restrictions on Market.
Upon hitting level k2−n, where k < M , the probability that we rise to level
(k+ i)2−n (or higher) before we hit level (k− 1)2−n equals 1

i+1 . We have P(ik ≤
j) = 1− 1

2+j . Starting from the level R2−n, the probability that we rise to level

(R + i)2−n (or higher) before we hit level (M − 1)2−n (where M ≤ R) equals
R−M+1
R−M+i+1 . We have P(M + iM ≤ R + j) = j+1

R−M+j+2 ; this formula is also true
for M = R+ 1.

Since G(a, b) is right-continuous in b for each a, the infimum in (4) is attained
for each h ≥ 0. We then have G(a, b) < h for all b < G−1(a, h) and G(a, b) ≥ h
for all b ≥ G−1(a, h). And we have G

(
a,G−1(a, h)

)
≥ h, with > if the level h

does not occur at all. Then, for h ≥ C,

P(IM < h) = P
(
G
(
m, (M + iM )2−n

)
< h

)
= P

(
(M + iM )2−n < G−1(m,h)

)
= P

(
M + iM < 2nG−1(m,h)

)



=
1−R+ 2nG−1(m,h)

2−M + 2nG−1(m,h)

and, for k = 1, . . . ,M − 1,

P(Ik < h) = P
(
G
(
k2−n, (k + ik)2−n

)
< h

)
= P

(
(k + ik)2−n < G−1(k2−n, h)

)
= P

(
ik < −k + 2nG−1(k2−n, h)

)
= 1− 1

2− k + 2nG−1(k2−n, h)

Therefore,

lnP(L < h) = ln

M−1∏
k=1

P(Ik < h) = ln

M−1∏
k=1

(
1− 1

2− k + 2nG−1(k2−n, h)

)

=

M−1∑
k=1

ln

(
1− 1

2− k + 2nG−1(k2−n, h)

)

≤ −
M−1∑
k=1

1

2− k + 2nG−1(k2−n, h)

= − 2−n
M−1∑
k=1

1

G−1(k2−n, h)− k2−n + 2× 2−n

≤ −
M−1∑
k=1

∫ (k+1)2−n

k2−n

da

G−1(a, h)− a+ 3× 2−n

≤ −
∫ M2−n

2−n

da

G−1(a, h)− a+ 3× 2−n

≤ −
∫ m

2−n

da

G−1(a, h)− a+ 3× 2−n
.

Plugging these inequalities into (10) results in the lower bound

C +

∫ ∞
C

1− G−1(m,h)− 2−n(R− 1)

G−1(m,h)− 2−n(M − 2)
exp

(∫ m

2−n

da

a−G−1(a, h)− 3× 2−n

)
dh

for E[XG|σ]. Letting n→∞, we obtain the inequality ≥ in (9). (Notice that we
only need the convergence of the above outer integral to the outer integral in (9)
when the limits of integration C and∞ are replaced by C∨ε and D ∈ (C∨ε,∞),
respectively, where ε is a positive constant.)

5.2 Upper bound from Investor strategy

To prove the inequality ≤ in (9), we consider the strategy that starts with initial
capital equal to the expression in Theorem 6, and then in situation σ takes



position (with m and C as defined in Theorem 7.)

S(σ) :=

∫ ∞
C

1

G−1(m,h)−m
exp

(∫ m

0

da

a−G−1(a, h)

)
dh (11)

(this is the derivative of the right-hand side of (9) w.r.t. the current price r). We
are required to show that this strategy’s capital is always equal to or exceeds
the right-hand side of (9). Suppose this condition is satisfied at time t. Since the
right-hand side of (9) is linear in r, this condition will still be satisfied at time
t+ 1 if neither C nor m change. More generally, if the price becomes p at time
t+ 1, the strategy’s capital at time t+ 1 is required to be at least

f(p) := C ∨G(m, p) +

∞∫
C∨G(m,p)

1− G−1(m ∧ p, h)− p
G−1(m ∧ p, h)− (m ∧ p)

exp

 m∧p∫
0

da

a−G−1(a, h)

 dh.

Since the current capital is at least f(r), it suffices to prove that f(p) lies below
our tangent f(r) +S · (p− r) to f(p) at the point p = r. Therefore, it suffices to
prove that f is concave. There are three regimes:

∂2f(p)

∂2p
=


−
∫ ∞
C

exp
(∫ p

0
da

a−G−1(a,h)

)
∂G−1(p,h)

∂p

(p−G−1(p, h))2
dh if p < m

0 if m < p < G−1(m,C)

−
exp

(∫m
0

da
a−G−1(a,G(m,p))

)
∂G(m,p)

∂p

p−m
if G−1(m,C) < p

The first case is negative as G−1(p, h) increases in p. The last case is negative
too, as p−m is positive, and G(m, p) increases in p. In the borderline cases p = m
and p = G−1(m,C), the required conditions for concavity on the one-sided first
derivatives of f are easy to check.

6 Proof of Theorem 4

In this section we prove the representation theorem.

6.1 From north-west-sets to adjusters

Say (Ih)h≥0 is a nested family of north-west sets, and Q is a probability measure
on [0,∞). We now argue that

G(a, b) :=

∫ ∞
0

GIh(a, b) dQ(h)

is an adjuster. It is a candidate guarantee; it is upper semi-continuous since all
its super-level sets are closed and it is decreasing-increasing since each super-
level set is north-west. It is an adjuster, witnessed by the strategy that splits the
capital according to Q over strategies SIh .



6.2 From adjusters to north-west-sets

Say we have an arbitrary adjuster G. We now write it as a convex combination
of nested north-west adjusters. Consider the family of super-level sets

Ih :=
{

(a, b)
∣∣ G(a, b) ≥ h

}
Since G is a candidate guarantee, each Ih is closed and north-west. By Theorem 6

GIh(a, b) =
1{(a,b)∈Ih}

1− exp
(∫ 1

0
1

a−G−1(a,h) da
)

is an admissible adjuster. Now construct the measure Q on [0,∞) with

Q( dh) :=

(
1− exp

(∫ 1

0

1

a−G−1(a, h)
da

))
dh.

Obviously Q is non-negative. In addition, since G is an admissible adjuster, Q
integrates to 1 and hence is a probability measure. Finally, for each (a, b)∫ ∞

0

GIh(a, b) dQ(u) =

∫ ∞
0

1{(a,b)∈Ih} dh = G(a, b).

7 Discussion/Conclusion

We presented strategies for online trading that guarantee a large payoff when
the price ever exhibits a large upcrossing, without taking any risk. We obtained
an exact and elegant characterisation of the guarantees that can be achieved.
We designed a guarantee that is close to ideal, and obtained an efficient strategy.

7.1 Applications

Our results are phrased in terms of finance. However, as we show in Theorem 4,
a guarantee can always be achieved by a strategy that neither sells short, i.e.
takes a negative position St < 0, or uses leverage, i.e. takes a position St ≥
Kt−1/ωt−1 that is more expensive than the capital. So the fraction of capital
invested Stωt−1/Kt−1 ∈ [0, 1] is a proper probability. We can therefore think of
our strategies as maintaining weights on two experts. If we substitute, in place
of the price, the likelihood ratio between these two experts we obtain online
methods for probability prediction with the log loss function.

One application lies is hierarchical modelling, where we want to aggregate at
each level of detail the predictions of a model of that complexity, and the recur-
sive combination of more refined models. This construction drives for example
the successful data compression method Context Tree Weighting [5].

Another application is hypothesis testing, where a so-called null hypothesis
is compared with an alternative hypothesis. Again, substituting the likelihood



ratio for the price, securing a high payoff translates to amassing evidence against
the null. The presence of a large upcrossing translates back to the existence of
a sub-interval of data on which the null looks particularly fishy. Our strategies
would report a fair and sharp measure of evidence in the presence of any such
anomalous blocks. The advantage of this method is that the loss of evidence (the
adjustment) is expressed in terms of the evidential power of the anomaly and
not in its timing.

7.2 Downcrossings

A natural question is whether we can exploit the fact that a downcrossing [a, b]
occurs, i.e. that the price exceeds b before it drops below a. However, worst-
case price paths for the univariate adjuster case always eventually collapse to 0,
thus downcrossing any [a, b] for 0 ≤ a ≤ b ≤ maxt ωt. Hence, the presence of a
downcrossing [a, b] only conveys to us the information that the maximum is at
least b, and we find ourselves back in the univariate adjuster case.

7.3 Future work

In this paper we focus on two-argument guarantees for buying once, then selling
once. We are currently working on a full analysis of multi-argument guarantees
for iterated trading: both for a fixed number of times and for arbitrary references.
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